Category Archives: Electronics

Test Time vs BER and Confidence Level Using Excel

I am currently working as a project manager on a serial data channel qualification task. During this work, I need to estimate the time required to perform dozens of Bit Error Rate (BER) measurements under different scenarios (see Figure 1). In these measurements, we are working to ensure that our BER is always 1E-10 or less. I have performed this calculation many times and have derived all the associated formulas here. BER is a statistical parameter and its measurement is a function of the confidence level you want in your answer.  In this case, we want the highest confidence level possible consistent with a two-week test effort. Continue reading

Posted in Electronics, Excel | Leave a comment

Switch-Controlled Circuit To Isolate Battery from Load

I recently was asked if it was possible to design a circuit that will isolate a battery from a circuit until a momentary switch is closed (Figure 1). Once the momentary switch is closed, the battery is connected to the rest of the circuit and it cannot be disconnected by further mechanical switch closures. This was just a proof-of-feasibility exercise and NOT a final implementation. However, it was a good example of how to use LTSpice to verify the first design concept and is worthwhile documenting here. Continue reading

Posted in Electronics | Leave a comment

Accelerometer Power Calculation Example

I am working on a product that uses a Bosch BMA253 accelerometer as a motion sensor. This family of products has become a defacto standard for inexpensive motion detection. In this post, I will provide a simple power calculation example along with some empirical data that Bosch provided me. Normally, I would not consider a simple power calculation worth writing about, but the datasheet did not provide a worked example. I also provide an Excel workbook that parameterizes the critical variables. Continue reading

Posted in Electronics | Leave a comment

Estimating Component Junction Temperature Using Psi-JT

An engineer stopped by my cube today and asked a question about how to estimate the junction temperature of a part on a circuit card that may have an over-temperature problem. Using the common thermal resistances (θJA and θJC), he was obtaining nonsensical results. This problem was a good illustration of the difficulties present in estimating Integrated Circuit (IC) junction temperatures using the commonly supplied thermal resistances. Continue reading

Posted in Electronics | Leave a comment

Thermoelectric Cooler Calculation Example

My team is work hard on Dense Wavelength Division Multiplexing (DWDM) optical systems for communications applications. These systems put multiple wavelengths on a single fiber, and they provide our customers the opportunity to deliver significantly more bandwidth without needing to additional fiber optic cables. Continue reading

Posted in Electronics, Excel, optics | 1 Comment

Thermal Calculation Example for a Simple Electronic Component

An circuit designer came to me yesterday with an interesting problem whose solution nicely illustrates how simple component thermal calculations are performed. He was seeking advice on calculating the junction temperature of a Schottky diode (Figure 1) used in a switched-mode power supply. Continue reading

Posted in Electronics | 1 Comment

Analysis of 555-Based PWM Circuit

I received a request for the design formulas that can be used to estimate the frequency (f) and duty cycle (DC) generated by the 555 timer-based Pulse Width Modulator (PWM)  circuit shown in Figure 1. The presence of diodes in the charge and discharge paths are the main cause of the confusion. Continue reading

Posted in Electronics | Leave a comment

Linear Temperature Coefficient Resistor Nonlinearity

Our products contain many analog circuits. These circuits often require temperature compensation in order to meet their requirements across the product's entire temperature range. To perform this compensation, we often use resistors with a specified Temperature Coefficients of Resistance (TCR). A vendor recently stopped manufacturing one of the resistors we use for temperature compensation, and we needed to find a substitute. While searching for a substitute resistor, I needed to understand just how linear the approved resistor's temperature variation is so I can find an appropriate substitute. Continue reading

Posted in Electronics | 1 Comment

Yet Another FPGA Differential Termination Example

An engineer asked me for assistance on determining the termination circuit for a Xilinx uG476 series 7 FPGA. The circuit works is slightly different manner than those termination circuits I have developed before (here and here) because there is not termination voltage, so I thought I should document my work in detail. I will be using Mathcad 15 to determining the optimal resistor values for (1) terminating the circuit in printed circuit board's characteristic impedance (Z0), and (2) ensuring that I preserve as much of the transmit signal level as possible without exceeding the input circuit's maximum voltage level. Continue reading

Posted in Electronics | 7 Comments

Temperature Sensing with a Bandgap Reference

I have decided that my next home electronics project will be a precision thermometer that I can read over the Internet. I will be mounting the sensor at my cabin in Northern Minnesota, where winter temperatures can drop to -40 °C or lower. During the summer, temperatures can rise to nearly 40 °C. My plan is to connect the unit to a Raspberry Pie that I use to provide remote monitoring and control. I decided that I going to use a Texas Instruments' LMT70 precision temperature sensor, which uses a well-known circuit called a Brokaw bandgap reference to measure the temperature of its die. Continue reading

Posted in Electronics | 2 Comments