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Overview

• Part I: Physical design of a pair cable
• Part II: Electrical properties of a single pair
• Part III: Interference between pairs,

crosstalk
• Part IV: Estimates of channel capacity of pair

 cables. How to exploit the existing
cable plant in an optimum way
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Part I
Basic design of pair cables

• A single twisted pair

• Binder groups

• The cross-stranding principle

• Building binder groups and cables of
different sizes

• A complete cable
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Cross section of a single pair

Most common conductor diameters: 0.4 mm, 0.6 mm
(0.5 mm, 0.9 mm)

Insulation

Conductor
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A twisted pair
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Typical pair cables of the
Norwegian access network

• 0.4 and 0.6 mm conductor diameter

• Polyethylene insulation (expanded)

• Twisting periods in the interval
50 - 150 mm

• 10 pair cross-stranded binder groups

• 10 - 2000 pairs in a cable
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Pair positions in a 10 pair binder group

Cross-stranding [13]:
The positions of
all the pairs are
alternated randomly
along the cable.
Interference is thus
randomised, and all
pairs will be almost
uniform
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Cross-stranding

Cross-stranding
technique:
Each pair runs
through a die in the
cross-stranding
matrix.
The positions of the
dies are set by a
random generator
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Design of binder groups up to 100 pairs
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Design of binder groups up to 1000 pairs
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Typical cable design (”Kombikabel”)

This cable may be used as:  1)  overhead cable
2)  buried cable
3)  in water (fresh water)
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Part II
Properties of a single pair

• Equivalent model of a single pair
• Capacitance
• Inductance
• Skin effect
• Resistance
• Per unit length model of a pair
• The telegraph equation - solution
• Propagation constant
• Characteristic impedance
• Reflection coefficient, terminations
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A single pair in uniform insulation

εr

2a2r

A coarse estimate of the primary parameters R, L, C, G
may be found assuming a >> r, uniform insulation, and
no surrounding conductors

Digital Kommunikasjon 2002 14

NTNU
Department of Telecommunications

Model of a single pair in a cable

The electrical
influence of
the surrounding
pairs in the cable 
may be modelled
as an equivalent
shield. This model
will give accurate
estimates of 
R, L, C and G [12]
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Capacitance of a single pair

C a

r

r=
πε ε0

2
ln

The capacitance per unit length of a single pair is given by:

The capacitance of cables in the access network is 45 nF/km

Digital Kommunikasjon 2002 16

NTNU
Department of Telecommunications

Inductance of a single pair

L
a

r
=

µ
π

0 2
ln

The inductance per unit length of a single pair is given by:
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Skin effect
At high frequencies the current will flow in the outer part 
of the conductors, and the skin depth is given by [12]:

δ
π µ µ σ

=
1

0f r

σ is the conductance of the conductors

For copper the skin depth is given by:

δ =
2 11,

FkHz

mm δ

δ

=

=

2 11

0 067

.

.

mm at 1 kHz

mm at 1 MHz
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Resistance of a conductor
The resistance per unit length of a conductor is for r << a given by:

R
r

r

r
r

C =

>>

<<













1

1

2

2σπ
δ

σπ δ
δ

for (low frequencies)

for (high frequencies)
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Resistance of a pair
The resistance per unit length of a pair will be the sum of the 
resitances of the two conductors and is given by:

R R
r

r

r
r

C= ⋅ =

>>

<<













2

2

1

2σπ
δ

σπ δ
δ

for (low frequencies)

for (high frequencies)
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Conductance of a pair

G Cl= ⋅δ ω

The conductance per unit length of a pair is given by:

δl is the dielectric loss factor

A typical value of the loss factor is δl = 0.0003. This means 
that the conductance is usually negligible for pair cables.
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Per unit length model of a pair

L∆x R∆x

G∆xC∆x

U+∆U
I+∆I

∆x
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Model of a pair of length l

R, L, C, G

x=0 x=l 

I(x)

U(x)
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The telegraph equation

d

dx
U x R j L I x Z I x

d

dx
I x G j C U x Y U x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= − + = − ⋅

= − + = − ⋅

ω

ω

d

dx
U x Z Y U x

2

( ) ( )= ⋅ ⋅

Combining the equations:

From the circuit diagram:
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Solution of the telegraph equation

U(x) c e c e

I(x)
c

Z
e

c

Z
e

1
x

2
x

1 x 2 x

= ⋅ + ⋅

= − ⋅ + ⋅

⋅ − ⋅

⋅ − ⋅

γ γ

γ γ

0 0

c1 and c2 are constants
γ  is propagation constant
Z0 is characteristic impedance
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Propagation constant

α  is the attenuation constant in Neper/km
β  is the phase constant in rad/km

α α αdB = =
20

10
8 69

ln( )
.

Neper to dB:

γ ω ω

ω ω

= ⋅ = + ⋅ + =

+ ⋅

Z Y R j L G j C

R j L j C

( ) ( )

( )

γ α β= + j
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Characteristic impedance

Z
Z

Y

R j L

G j C

R j L

j C0 = =
+
+

=
+( )

( )

( )ω
ω

ω
ω

At high frequencies  R << jωL :

Z
L

C0 =

The characteristic impedance is approximately 120 ohms
at high frequencies for pair cables in the access network
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Attenuation constant

α = + = = ⋅
R C

L

G L

C

R C

L
k f

2 2 2 1

At high frequencies (f > 100 kHz)  R <<ωL.
By series expansion of γ :

At low frequencies (f < 10 kHz)  R >>ωL. Hence:

γ ω
ω

α β
ω

= ⋅ = +
⋅ ⋅

= =
⋅ ⋅

=

j C R j
R C

R C
k f

( )1
2

2 2
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Attenuation constant of pair cables
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Phase constant
At high frequencies (f > 100 kHz):

β ω= ⋅ = ⋅L C k f3

Phase velocity:

v
x

t L C

c

r

= = = = =
⋅

=
∆
∆

wavelength

cycle

2

2

1π β
π ω

ω
β ε

Phase velocity is 200 000 km/s for pair cables at high frequencies 
(εr = 2.3 for polyethylene)
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Termination of a pair

R, L, C, G

x=0

I(l)

U(l)

ZT

x=l
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Reflection coefficient

 

U(x) V e V e

I(x)
V

Z
e

V

Z
e

Z
U

I
Z

V V

V V

x x

x x

T

= ⋅ + ⋅

= ⋅ − ⋅

= =
+
−

+
⋅ −

−
− ⋅ −

+ ⋅ − − − ⋅ −

+ −

+ −

γ γ

γ γ

( ) ( )

( ) ( )

( )

( )

l l

l l

l

l

0 0

0

ρ = =
−
+

−

+

V

V
Z

Z Z

Z Z
T

T
0

0

0

Solution of telegraph equation
including termination imp. ZT

V+ is voltage of wave in 
positive direction at x=l
V- is voltage of reflected
wave in at x=l

Reflection coefficient:
No reflections (ρ =0) for 
ZT= Z0 . Ideal terminations
are assumed in later
crosstalk calculations
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Part III
Crosstalk in pair cables

• Basic coupling mechanisms
• Crosstalk coupling per unit length
• Near end crosstalk, NEXT
• Far end crosstalk, FEXT
• Statistical crosstalk coupling
• Average NEXT and FEXT
• Crosstalk power sum - crosstalk from many pairs
• Statistical distributions of crosstalk
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Crosstalk mechanisms
Main contributions:
Capacitive coupling
Inductive coupling 
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Ideal and real twisting of a pair
Ideal twisting

Actual twisting of a real pair

The crosstalk level observed in real cables 
is caused mainly by deviations from ideal twisting
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Crosstalk coupling per unit length
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Crosstalk coupling per unit length
Normalised NEXT coupling coefficient [11]:

Normalised FEXT coupling coefficient [11]:

κ
βN

N
i j

i j i jx
j

dU

U dx

C x

C

L x

L,
, ,( )

( ) ( )
= ⋅

⋅
= ⋅ +









1 1

20

2

1

Ci,j(x)  is the mutual capacitance per unit length between pair i and j
Li,j(x)  is the mutual inductance per unit length between pair i and j
β0 is the lossless phase constant, β ω0 = ⋅L C

κ
βF

F
i j

i j i jx
j

dU

U dx

C x

C

L x

L,
, ,( )

( ) ( )
= ⋅

⋅
= ⋅ −









1 1

20

2

1
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Near end crosstalk, NEXT

Digital Kommunikasjon 2002 38

NTNU
Department of Telecommunications

Near end crosstalk, NEXT

H f
V

V
j x e dxNE N

x j x( ) ( )= = − −∫20

10
0

2 2

0

β κ α β
l

Assuming weak coupling, the near end voltage transfer 
function is given by [11]:
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NEXT between two pairs
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Stochastic model of crosstalk couplings

Crosstalk coupling factors are white Gaussian stocastic processes:

NEXT autocorrelation function [6]:

FEXT autocorrelation function [6]:

R E x x kF F F F( ) ( ) ( ) ( )τ κ κ τ δ τ= ⋅ +[ ] = ⋅

R E x x kN N N N( ) ( ) ( ) ( )τ κ κ τ δ τ= ⋅ +[ ] = ⋅

kN and kF are constants
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Average NEXT

 

p f E H f E
V

V

k e dx
k

e
k

k f

NE

N
x N N

( ) ( )

.

= [ ] =












=

=
⋅

−( ) ≈ ⋅
= ⋅− −∫

2 20

10

2

0
2 4

0

0
2

4 0
2

2
1 5

4
1

4
β

β
α

β
α

α
l

l
N

NEXT increases 15 dB/decade with frequency

Average NEXT power transfer function between two pairs [6]:
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Far end crosstalk, FEXT
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Far end crosstalk, FEXT

  

H f
V

V
j x dxFE F( ) ( )= = ∫2

1
0

0

l

l

l

β κ

Assuming weak coupling, the far end voltage transfer 
function is given by [11]:
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Average FEXT

  

q f E H f E
V

V

k dx k k f

FE

F F

( ) ( )= [ ] =












=

= ⋅ ⋅ = ⋅ ⋅∫

2 2

1

2

0
2

0

0
2 2

l

l

l

l lβ β F2

FEXT increases 20 dB/decade with frequency
FEXT increases 10 dB/decade with cable length

Average FEXT power transfer function between two pairs [6]:
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Crosstalk from N different pairs
crosstalk power sum

• Only crosstalk between identical systems is
considered (self NEXT and self FEXT)

• Crosstalk from different pairs add on a
power basis

• Effective crosstalk is given by the sum of
crosstalk power transfer functions, which is
denoted crosstalk power sum
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Crosstalk from N different pairs
crosstalk power sum

H f H fNE ps NE i j
j
j i

N

( ) ( ),

2 2

1

= [ ]
=
≠

∑
NEXT crosstalk power sum for pair no i:

H f H fFE ps FE i j
j
j i

N

( ) ( ),

2 2

1

= [ ]
=
≠

∑
FEXT crosstalk power sum for pair no i:
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NEXT power sum
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Probability distributions of crosstalk
Crosstalk power transfer function for a single pair 
combination at a given frequency is gamma-distributed
with probability density [6]:

ν = 1.0   for  NEXT
ν = 0.5   for  FEXT
a  is average crosstalk power

p z
a

z ez

z

a( )
( )

= ⋅ 





⋅ ⋅−
−1 1

Γ ν
ν ν

ν
ν
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Probability density of NEXT and
FEXT for a single pair combination
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Probability of crosstalk for an
arbitrary pair combination

Different pair combinations will have different levels 
of crosstalk coupling (different kN and kF).

It can be shown that:

The crosstalk power transfer function for a random 
pair combination is approximately gamma-distributed

The number of degrees of freedom, ν must be found 
empirically. ν < 1.0 for NEXT and ν < 0.5 for FEXT 
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Probability of crosstalk power sum
Crosstalk from different pairs add on a power basis. Hence,
crosstalk power sum is approximately gamma-distributed
with probability distribution:

p z
a

z eps
ps

ps

ps

z

a
ps

ps

ps

ps( )
( )

= ⋅








 ⋅ ⋅−

−1 1

Γ ν

ν
ν

ν

ν

aps=Na,   where a is the average crosstalk of one pair combination
νps=Nν ,  where ν is the number of degrees of freedom 

for a random pair combination
N  is the number of disturbing pairs
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Probability density of
crosstalk power sum
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Worst case crosstalk
Crosstalk dimesioning is usually based upon the 99% point
 of NEXT and FEXT power sum, which is given by 
(1% of the pairs will have crosstalk that exceeds this limit):

 

p f N E k f c

q f N E k f c

ps ps

ps ps

99 2
1 5

99

99 2
2

99

( ) ( )

( ) ( )

.= ⋅ [ ] ⋅ ⋅

= ⋅ [ ] ⋅ ⋅ ⋅

N

F

for NEXT

for FEXT

ν

νl

c99(νps)  is the ratio between the 99% point and the average power sum
             in the gamma distribution
The expectations E[kN2] and E[kF2] are taken over all pair combinations
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Empirical worst case NEXT model

p F
N

Fps 99
4

0 6
1 510

49
( )

.
.= ⋅ 





⋅−

N is the number of disturbing pairs in the cable
F is the frequency in MHz

International model of 99% point of NEXT power sum
based upon 50 pair binder groups: 

This model fits well with 100% filled Nowegian cables 
with 10 pair binder groups
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Empirical worst case FEXT model

q F
N

F Lps 99
4

0 6
23 10

49
( )

.

= ⋅ ⋅ 





⋅ ⋅−

N is the number of disturbing pairs in the cable
F is the frequency in MHz
L is the cable length in km

International model of 99% point of FEXT power sum
based upon 50 pair binder groups: 

This model fits well with 100% filled Nowegian cables 
with 10 pair binder groups
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Part IV
Channel capacity estimates [1,2,8]

• Shannon’s channel capacity formula

• Signal and noise models

• Realistic estimates of channel capacity

• Channel capacity per bandwidth unit

• One-way transmission

• Two-way transmission

• Crosstalk between different types of systems,
alien NEXT, alien FEXT
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Shannon’s theoretical channel capacity

Maximum theoretical channel capacity 
in the frequency band [fl,fh]:

C
S f

N f
dfSh

fl

fh

= +






∫ log

( )
( )2 1 bit/s

S(f):  signal power density
N(f):  noise power density
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Capacity per bandwidth unit
A realistic estimate of bandwidth efficiency [2]:

η λ( ) log
( )

( )
f

C

f
k

S f

N feff= = ⋅ + ⋅










∆
∆ 2 1 bit/s/Hz

S(f):  signal power density
N(f):  noise power density
λ ≤ 1:  factor for margin (safety margin + margin for mod.meth.)
keff ≤ 1:  factor for overhead (sync bits, RS-code, cyclic prefix)
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Signal transmission

• Attenuation proportional to
due to skin effect (f > 100 kHz)

• Signal transfer function:

f

H f k f
dB

( ) exp= = −( )−
10 20

α l

l

αdB:  attenuation constant in dB
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Signal and noise models

• Signal:

• Noise models:

N F

N F NEXT

N F L e FEXT

N AWGN

NEXT

FEXT
L

AWGN

( )

.

=

= ⋅
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=









−

− −

−

10

3 10

10

4 1 5

4 2 2

8

α

S F e L( ) = −2α
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Channel capacity vs. frequency
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Channel capacity vs frequency II

0 2 4 6 8 10
0

5

10

15

Frequency,  MHz

P
ot

en
tia

l b
an

dw
ith

 e
ffi

ci
en

cy
, 

bi
t/s

/H
z one-way transmission

two-way transmission
2*two-way transmission

0 0.5 1 1.5 2
0

5

10

15

Frequency,  MHz

P
ot

en
tia

l b
an

dw
ith

 e
ffi

ci
en

cy
, 

bi
t/s

/H
z one-way transmission

two-way transmission
2*two-way transmission

L=1 km L=3 km



32

Digital Kommunikasjon 2002 63

NTNU
Department of Telecommunications

Total channel capacity

R k
S F

N N
dfone way eff

FEXT AWGNfl

fh

− = + ⋅
+









∫ log

( )
2 1 λ

R k
S F

N N N
dftwo way eff

NEXT FEXT AWGNfl

fh

− = + ⋅
+ +









∫ log

( )
2 1 λ

One-way transmission:

Two-way transmission:

The channel capacity is somewhat greater than this expression for two-way 
transmission due to uncorrelated NEXT in different frequency bands [9,10]
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Assumptions for estimation of bitrates
• For one-way transmission, the total bitrate found

in the calculations must be divided by downstream
and upstream transmission

• Identical systems in all pairs of the cable (only self
NEXT and self FEXT)

• All pairs are used, the cable is 100% filled

• Net bitrate is 90% of total bitrate (keff=0.90)

• Frequency band:  f ≥ 100 kHz,
upper limit 11 MHz
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Assumptions II

• Multicarrier modulation [7]

• Adaptive modulation in each sub-band

• M-TCM modulation in each sub-band
4 ≤ M ≤ 16384, 1 - 13 bit/s/Hz

• Distance to Shannon (λ):   9 dB
(6 dB margin + 3 dB for modulation)

• White noise: 80 dB below output signal

• Cable: 0.4 mm,  22.5 dB/km at 1 MHz
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Potential range for .4 mm cable
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Potential range for .4 mm cable II
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Digital Subscriber Line systems,
xDSL

• ADSL;  Asymmetric Digital Subscriber Lines [5]
– Asymmetric data rates, 256 kbit/s - 8 Mbit/s downstream,

range up to 4 - 5 km

• SHDSL;  Symmetric High-speed Digital
Subscriber Lines [3]
– Symmetric data rates, 192 kbit/s - 2.3 Mbit/s, range up to 6 - 7 km

• VDSL;  Very high-speed Digital Subscriber Lines
– Asymmetric or symmetric data rates (still under standardisation),

up to 52 Mbit/s downstream, range typically  ≤ 1  km [4]
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Frequency allocations in the
access network

Upstream

Downstream

ADSL

SHDSL low ADSL + VDSL

Frequency, kHz

Frequency, kHz

2 Mbit/s SHDSL

SHDSL low

1104

2 Mbit/s SHDSL

0 125 211 400

11040 125 276 400

VDSL

SHDSL low ≤ 640 kbit/s
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Conclusions

• Frequency planning in pair cables is very
important

• New systems should be introduced with
great care in order to preserve the potential
transmission capacity of the cable

• Full rate SHDSL systems overlaps with
ADSL
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