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Altitude Measurement

Although altitudes and zenith distances are equally slditidy navigational calculations, most formulas are triadélly
based upon altitudes which are easily accessible using idielesr sea horizon as a natural reference line. Direct
measurement of the zenith distance, however, requiressamiinent with an artificial horizon, e.g., a pendulum orrispi
level indicating the direction of gravity (perpendicularthe local plane of horizon), since a reference point in #ye s
does not exist.

Instruments

A marine sextant consists of a system of two mirrors and a telescope mounted aretal frame. A schematic
illustration (side view) is given irfFig. 2-1 The rigid horizon glass is a semi-translucent mirror dtgatcto the frame.
The fully reflecting index mirror is mounted on the so-cdliadex arm rotatable on a pivot perpendicular to the frame.
When measuring an altitude, the instrument frame is heldvertical position, and the visible sea horizon is viewed
through the scope and horizon glass. A light ray coming frbendbserved body is first reflected by the index mirror
and then by the back surface of the horizon glass beforeiegtdre telescope. By slowly rotating the index mirror on
the pivot the superimposed image of the body is aligned withimage of the horizon. The corresponding altitude,
which is twice the angle formed by the planes of horizon géass index mirror, can be read from the graduated limb,
the lower, arc-shaped part of the sextant frame (not shdetgiled information on design, usage, and maintenance of
sextants is given in [3] (see appendix).
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On land, where the horizon is too irregular to be used as aemde line, altitudes have to be measured by means of
instruments with an artificial horizon:

A bubble attachmentis a special sextant telescope containingraarnal artificial horizon in the form of a small
spirit level whose image, replacing the visible horizorsuperimposed with the image of the body. Bubble attachments
are expensive (almost the price of a sextant) and not veryratebecause they require the sextant to be held absolutely
still during an observation, which is difficult to manage séxtant equipped with a bubble attachment is referred to as a
bubble sextant Special bubble sextants were used for air navigation beédectronic navigation systems became
standard equipment.

A pan filled with water, or preferably a more viscous liqual, g., glycerol, can be utilized as axternal artificial
horizon. Due to the gravitational force, the surface of the liquidte a perfectly horizontal mirror unless distorted by
vibrations or wind. The vertical angular distance betwedody and its mirror image, measured with a marine sextant,
is twice the altitude. This very accurate methothésperfect choice for exercising celestial natioain a backyard.



A theodolite is basically a telescopic sight which can be rotated abowtréical and a horizontal axis. The angle of
elevation is read from the vertical circle, theihontal direction from the horizontal circle. Briilt spirit levels are used
to align the instrument with the plane of the sensible haribefore starting the observations (artificial horizon).
Theodolites are primarily used for surveying, but they ateelient navigation instruments as well. Many models can
measure angles to 0.1' which cannot be achievatd\eifle the best sextants. A theodolite is mounte@ dripod and has
to stand on solid ground. Therefore, it is restricted to laraVvigation. Traditionally, theodolites measure zenith
distances. Modern models can optionally measuiteiddts.

Never view the sun through an optical instrument without insrting a proper shade glass, otherwise your eye
might suffer permanent damage !

Altitude corrections

Any altitude measured with a sextant or theodolite containserrors. Altitude corrections are necessary to
eliminate systematic altitude errors and to reduce the altude measured relative to the visible or sensible horizon
to the altitude with respect to the celestial horizon and thecenter of the earth (chapter 1). Altitude corrections do
not remove random errors.

Index error (IE)

A sextant or theodolite, unless recently calibrated, uguzds a constant erroindex error, IE) which has to be
subtracted from the readings before they can be used fogatmal calculations. The error is positive if the disgldy
value is greater than the actual value and negative if theladied value is smaller. Angle-dependent errors require
alignment of the instrument or the use of an irdiial correction table.

1st correction: H, = Hs-IE

Thesextant altitude, Hs, is the altitude as indicated by the sextant leeémy corrections have been applied.

When using an external artificial horizon, thot Hs!) has to be divided by two.

A theodolite measuring the zenith distance, z,uireg the following formula to obtain,H

H, =90°-(z-IE)

Dip of horizon

If the earth's surface were an infinite plane,blesiand sensible horizon would be identical. Iditgahe visible horizon
appears several arcminutes below the sensible horizorhvidithe result of two contrary effects, the curvature of the
earth's surface and atmospheric refraction. glaemetrical horizon, a flat cone, is formed by an infinite number of
straight lines tangent to the earth and radiating from theeoler's eye. Since atmospheric refraction bends ligts ray
passing along the earth's surface toward the earth, altgpoimthe geometric horizon appear to be elevated, and thus
form the visible horizon. If the earth had no atmosphere, Miséble horizon would coincide with the geometrical
horizon Fig. 2-2).

Fig. 2-2

Observer's Eye
Dip

Sensinle Horizon

HE

Visikle Horizon Earth

Geometrical Horizon



The altitude of the sensible horizon relative to the visitdegizon is calleddip and is a function of théaeight of eye
HE, the vertical distance of the observer's eye filmerearth's surface:

Dip['] = 176[/HE[m] = 097/HE[ft

The above formula is empirical and includes the effects @f ¢rvature of the earth's surface and atmospheric
refraction*.

*At sea, the dip of horizon can be obtained directly by meiaguthe vertical angle between the visible horizon in frohthe observer and the
visible horizon behind the observer (through the zenithiptBcting 180° from the angle thus measured and dividiegrésulting angle by two
yields the dip of horizon. This very accurate metiorarely used because it requires a specialimgnt (similar to a sextant).

2nd correction: H, = H, - Dip
The correction for dip has to be omitted (dip = 0) if any kind of an artificial horizon is used since an artificial
horizon indicates the sensible horizon.

The altitude H obtained after applying corrections for index eand dip is also referred to apparent altitude, Ha.

Atmospheric refraction

A light ray coming from a celestial body is slightly defledtéoward the earth when passing obliquely through the
atmosphere. This phenomenon is calleffaction, and occurs always when light enters matter of differensigmat an
angle smaller than 90°. Since the eye can not detect thetawevaf the light ray, the body appears to be at the end of a
straight line tangent to the light ray at the observer's ey thus appears to be higher in the sky. R is the angular
distance between apparent and true position didiy at the observer's eyéd. 2-3)
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Refraction is a function of Ha (= ). Atmosphericstandard refraction, Ry, is 0" at 90° altitude and increases
progressively to approx. 34' as the apparent d#itapproaches 0°:
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R, can be calculated with a number of formulas like, e Sgnart'sformula which gives highly accurate results from 15°
through 90° altitude [2,9]:

, 097127 0.00137
R['] = - ]
tanHz[ ] tams Hz[ ]



For navigationSmart'sformula is still accurate enough at 10° altitude. Below &% érror increases progressively. For
altitudes between 0° and 15°, the following formislaecommended [10]. Hs measured in degrees:

34133+ 4.197[H, + 0.00428H2
1+ 0.505[H, + 0.0845[H2

R[] =

A low-precision refraction formula including the alk range of altitudes from 0° through 90° was fibby Bennett

1

tan(H2[°] o 131 j

H,[°] + 44

R[] -

The accuracy is sufficient for navigational purppsEhe maximum systematic error, occurring at 1ude, is approx.
0.07' [2]. If necessarnBennett'formula can be improved (max. error: 0.015") by fibllowing correction:

I:'20, improved[ l] = RO [ I] - 006 Bln (147 |:IRO[ I] + 13)

The argument of the sine is stated in degrees [2].

Refraction is influenced by atmospheric pressure and aip¢gature. The standard refraction, Ras to be multiplied
with a correction factor, f, to obtain the refraction for aem combination of pressure and temperature if high pr@tisi
is required.
p[ mbar ] o 283 _ plin.Hg] o 510

1010 273+T[°C] 2983  460+T[°F |

P is the atmospheric pressure and T the air temperetaadard conditions (f = 1) are1010 mbar(29.83 in) andL0°
C (50°F). The effects of air humidity are comparefyvsmall and can be ignored.

Refraction formulas refer to a fictitious standard atmasphwith the most probable density gradient. The actual
refraction may differ from the calculated one if anomalotre@spheric conditions are present (temperature inversion
mirage effects, etc.). Particularly at low altitudes, aaties of the atmosphere gain influence. Therefore, rafract
altitudes below ca. 5° may become erratic, andutatied values are not always reliable. It shouldneationed that dip,
too, is influenced by atmospheric refraction ang fmecome unpredictable under certain meteorologizatiitions.

3rd correction: H, = H,-f[R,

H is the altitude of the body with respect to the sesible horizon.

Parallax

Calculations of celestial navigation refer to the altitwdéh respect to the earth's center and the celestial harizign
2-4 illustrates that the altitude of a near object, e.g., the medth respect to the celestial horizon,,Hs noticeably
greater than the altitude with respect to the geoidal (béjshorizon, H. The difference k#H, is called parallax in

altitude, P. It decreases with growing distance between object and eartl is too small to be measured when
observing stars (compare with chaptefFig. 1-4). Theoretically, the observed parallax refers to the sédashot to the
geoidal horizon.



Since the height of eye is several magnitudes smaller thenaitius of the earth, the resulting error in parallax is not
significant (< 0.0003' for the moon at 30 m heigheye).
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The parallax (in altitude) of a body being on the geoidal mamiis calledhorizontal parallax, HP. The HP of the sun
is approx. 0.15". Current HP's of the moon (ca. 1°!) and thegadional planets are given in thdautical Almanac
[12] and similar publications, e.g., [13]. P ifuaction of altitude and HP of a body:

P = arcsin(sinHP[@osH,) = HP [¢osH,

When we observe the upper or lower limb of a body (see below)assume that the parallax of the limb equals the
parallax of the center (when at the same altitude). For ge@mneasons (curvature of the surface), this is not quite
correct. However, even with the moon, the body with by fardheatest parallax, the resulting error is so small that it
can be ignored (<< 1").

The above formula is rigorous for a spherical earth. Howether earth is not exactly a sphere but resembleskdate
spheroid, a sphere flattened at the poles (chapter 9). This may casisalhbut measurable erraz 0.2") in the parallax
of the moon, depending on the observer's position [12]. dfoee, a small correctiom\P, should be added to P if high
precision is required:

1

AP = f [HP [sin(2[Lat) [@osAz, [3inH. —sin® Lat[¢osH f=———
fsin(20Lat) osAz, inH, y TTErT

P

improved

= P+AP

Lat is the observer's estimated latitude (chapterrd)y , the azimuth of the moon, is either measured with a compass
(compass bearing) or calculated using the formgileen in chapter 4.

dthcorrection:  H, = H, +P

Semidiameter

When observing sun or moon with a marine sextant or the@dalits not possible to locate the center of the body with
sufficient accuracy. It is therefore common practice to soea the altitude of the upper or lower limb of the body and
add or subtract the appareemidiameter, SD, the angular distance of the respective limb ftbencenterFig. 2-5).

We correct for thegeocentricSD, the SD measured by a fictitious observer at the centezatta, since Hirefers to the

celestial horizon and the center of the earth (Sige 2-4). The geocentric semidiameters of sun and moon are given on
the daily pages of thBlautical Almanac [12]. We can also calculate the geocentric SD of the moon fitmtabulated
horizontal parallax:

SD

geocentric

= arcsin(k 3inHP) = k [HP Kypoon = 0.2725
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The factor k is the ratio of the radius of the m@¢dn38 km) to the equatorial radius of the earB7@km).

Although the semidiameters of the navigational planetsnatequite negligible (the SD of Venus can increase to 0.5"),
the centers of these bodies are customarily observed, amdmection for SD is applied. Semidiameters of stars are
much too small to be measured (SD=0).

Sth correction: H, = H,+ SD

geocentric
(lower limb: +SD, upper limb: —SD)

When using a bubble sextant which is less accurate anywapbaerve the center of the body and skip the correction
for semidiameter.

The altitude obtained after applying the aboveexions is calledbserved altitude Ho.
Ho = H,

Ho is the geocentric altitude of the body, the altitude with espect to the celestial horizon and the center of the
earth (see chapter 1).

Alternative corrections for semidiameter and paralbx

The order of altitude corrections described above is in @zowce with the Nautical Almanac. Alternatively, we can
correct for semidiametdyefore correcting for parallax. In this case, however, we have toutate with thetopocentric
semidiameter, the semidiameter of the respective bodyess fsem the observer's position on the surface of the earth
(seeFig. 2-5), instead of the geocentric semidiameter.

With the exception of the moon, the body nearest to the etlmthe is no significant difference between topocentric and
geocentric SD. The topocentric SD of the moon is only matbjirggeater than the geocentric SD when the moon is on
the sensible horizon but increases measurably as thedaltincreases because of the decreasing distance between
observer and moon. The distance is smallest (decreasedy thie radius of the earth) when the moon is in the zenith.
As a result, the topocentric SD of the moon bemthée zenith is approximately 0.3' greater thanghecentric SD. This
phenomenon is callealigmentation (Fig. 2-6).

The accurate formula for the topocentric (augménsechidiameter of the moon is stated as:

k

1 .
\/W - (cosH, +k)? -sinH,

SD

topocentre

= arctan

(observation of lower limb: +k, observation of upfpimb: —k)

This formula is rigorous for a spherical earth. Biner caused by the flattening of the earth issimall to be measured.
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The following formula was proposed I8tark[14]. It ignores the difference between upper and lower lioob is still
accurate enough for navigational purposes (erbf)<

k[HP

S o=
|:Qopocentrc 1-sinHP &in H3

Thus, the fourth correction is:

4th correction(alt.): Haar = Hat SDypocente

(lower limb: +SD, upper limb: —SD)

H, it is the topocentric altitude of the center of theom

Using the parallax formulas explained above, weudate B, from H, .. Thus, the fifth correction is:

Sth correction(alt.) : How = Hyw +P

4, alt alt

HO = H5,alt

Since the geocentric SD is easier to calculate than the &ioc SD, it is generally recommendable to correct for the
semidiameter in the last place unless one hasdw kime augmented SD of the moon for special reasons

Combined corrections for semidiameter and parallaof the moon

For observations of the moon, there is a surprisingly simiplenula including the corrections for augmented
semidiameteas well asparallax in altitude:

Ho = H, +arcsin[sinHP [{cosH, + k)]
(lower limb: +k, upper limb: —k)

The formula is rigorous for a spherical earth but does nat iato account the effects of the flattening. Therefore, the
small correctiom\P should be added to Ho.



To complete the picture, it should be mentioned that therdss a formula to calculate the topocentric (augmented)
semidiameter of the moon from the geocentric alétof the moon's center, H:

SDtopocentri: = arCSin 1 k . H
\/ 1+ 203"

sinz HP - sinHP

This formula, too, is based upon a spherical motitie earth.

Phase correction (Venus and Mars)

Since Venus and Mars show phases similar to the moon, thparapt center may differ somewhat from the actual
center. Since the coordinates of both planets tabulatedeifNautical Almanac [12] refer to the apparent center, an
additional correction is not required. The phaseemion for Jupiter and Saturn is too small teslgmificant.

In contrast, coordinates calculated wititeractive Computer Ephemeris refer to the actual center. In this case, the
upper or lower limb of the respective planet shdaddbbserved if the magnification of the telescigprufficient.

The Nautical Almanac provides sextant altitude correction tables for sun, glarstars (pages A2 — A4), and the moon
(pages xxxiv — xxxv), which can be used instead of the abokmdtas if very high precision is not required (the tables
cause additional rounding errors).

Instruments with an artificial horizon can exhibit additad errors caused by acceleration forces acting on the bubbl
pendulum and preventing it from aligning itself with theadition of gravity. Such acceleration forces can be random
(vessel movements) or systematic (coriolis force). Théotierforce is important to air navigation and requires acsgle
correction formula. In the vicinity of mountains, ore dejp@sand other local irregularities of the earth's crusaviyy
itself can be slightly deflected from the normathe reference ellipsoid (deflection of the vettisge chapter 9).



