Days Postings
December 2024 M T W T F S S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Blog Series
Copyright Notice
© Mark Biegert and Math Encounters, 2024. Publication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Mark Biegert and Math Encounters with appropriate and specific direction to the original content.
Disclaimer
All content provided on the mathscinotes.com blog is for informational purposes only. The owner of this blog makes no representations as to the accuracy or completeness of any information on this site or found by following any link on this site. The owner of mathscinotes.com will not be liable for any errors or omissions in this information nor for the availability of this information. The owner will not be liable for any losses, injuries, or damages from the display or use of this information.
Tag Archives: lead acid
Battery Freezing Math
I live in a cold climate -- so cold that under certain circumstances we can freeze our lead-acid batteries (Figure 1). A customer who lives in my region called recently and was wondering if I thought any of his batteries would have frozen over the winter. A number of his Internet service subscribers have vacation homes that are unoccupied over the winter. All of these vacation home owners turn off their AC power for the winter. Since all of our Optical Network Terminals (ONT) are connected to Uninterruptible Power Sources (UPS), they will begin operating off of their battery when the AC power goes away. If the home owner does not disconnect the battery, the ONT will run discharge the battery. This is important because a discharged battery will freeze -- a charged battery will not freeze. A battery that has been frozen is very likely a dead battery. Continue reading
Thermal Runaway Model of Lead-Acid Battery (Part 2)
Derivation of the Output Power Equation The output power equation (Equation 3) is really a restatement of Newton's law of cooling. Equation 3 states the battery's steady-state power dissipation is a linear function of the battery's temperature and the ambient … Continue reading