
Spatial Signal Processing (Beamforming)



What Is Beamforming?
• Beamforming is spatial filtering, a means of transmitting 

or receiving sound preferentially in some directions over 
others.

• Beamforming is exactly analogous to frequency domain 
analysis of time signals.

• In time/frequency filtering, the frequency content of a 
time signal is revealed by its Fourier transform.

• In beamforming, the angular (directional) spectrum of a 
signal is revealed by Fourier analysis of the way sound 
excites different parts of the set of transducers.

• Beamforming can be accomplished physically (shaping 
and moving a transducer), electrically (analog delay 
circuitry), or mathematically (digital signal processing).



Beamforming Requirements
• Directivity – A beamformer is a spatial filter and can be 

used to increase the signal-to-noise ratio by blocking 
most of the noise outside the directions of interest.

• Side lobe control – No filter is ideal. Must balance main 
lobe directivity and side lobe levels, which are related.

• Beam steering – A beamformer can be electronically 
steered, with some degradation in performance.

• Beamformer pattern function is frequency dependent: 
– Main lobe narrows with increasing frequency
– For beamformers made of discrete hydrophones, 

spatial aliasing (“grating lobes”) can occur when the 
the hydrophones are spaced a wavelength or greater 
apart.



A Simple Beamformer
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plane wave has wavelength 
λ = c/f, 

where f is the frequency
c is the speed of sound h1 h1 are two 

omnidirectional hydrophones



Analysis of Simple Beamformer
• Given a signal incident at the center C of the array: 

• Then the signals at the two hydrophones are:

where

• The pattern function of the dipole is the normalized response of the dipole 

as a function of angle:
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Beam Pattern of Simple Beamformer
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Beam Pattern of a 10 Element Array
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Beamforming – Amplitude Shading

• Amplitude shading is applied as a beamforming 
function. 

• Each hydrophone signal is multiplied by a 
“shading weight”

• Effect on beam pattern:
– Used to reduce side lobes
– Results in main lobe broadening



Beam Pattern of a 10 Element 
Dolph-Chebychev Shaded Array
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Analogy Between Spatial Filtering (Beamforming) and Time-
Frequency Processing

Goals of Spatial Filtering:

1. Increase SNR for plane wave signals 
in ambient ocean noise.

2. Resolve (distinguish between) plane 
wave signals arriving from different 
directions.

3. Measure the direction from which 
plane wave signals are arriving.

Goals of Time-Frequency Processing:

1. Increase SNR for narrowband signals in 
broadband noise.

2. Resolve narrowband signals at different 
frequencies.

3. Measure the frequency of narrowband 
signals.



ψ1 ψ0 Spatial angle ψ

Ambient noise
angular density

Plane wave at ψ1
Plane wave at ψ0

Narrow spatial 
filter at ψ0

f1 f0 Frequency

Broadband
noise spectrum

Sine wave at f1
Sine wave at f0

Narrowband
filter at f0

Time-Frequency Filtering and Beamforming



SNR Calculation: Time-Frequency Filtering
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SNR Calculation: Time-Frequency Filtering (Cont’d)
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SNR Calculation: Spatial Filtering

response power angular filter Spatial        
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SNR Calculation: Time-Frequency Filtering (Cont’d)
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Array Gain and Directivity Calculations
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Array Gain and Directivity Calculations (Cont’d)

For the array, assume it is steered in the direction of Ω0 and that 
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Array Gain and Directivity Calculations (Cont’d)
If the noise is isotropic (the same from every direction)

Then the Array Gain (AG) becomes the Directivity Index (DI), a performance index
For the array that is independent of the noise field.
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Line Hydrophone Spatial Response
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Line Hydrophone Spatial Response (Cont’d)

The received signal is

Let the hydrophone’s response or sensitivity at the point x be g(x).
Then, the total hydrophone response is 
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Line Hydrophone Spatial Response (Cont’d)

Using properties of the Fourier Transform:

And:
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Line Hydrophone Spatial Response (Cont’d)

Thus, the total hydrophone response can be written:
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Response To Plane Wave

An Example:

Unit Amplitude Plane Wave from direction ψ0:

Note that the output is the input signal modulated by the value of the 
pattern function at ψ0
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Response To Plane Wave (Cont’d)

The pattern function is the same as the angular power 
response defined earlier.

Sometimes we use electrical angle u:
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Uniform Aperture Function

Consider a uniform aperture function
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Rectangular Aperture Function and Pattern Function



Array Main Lobe Width (Beamwidth)
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Beamwidth Calculation Example: Uniform Weighting
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Line Array of Discrete Elements
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Uniformly Weighted Discrete Line Array
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Pattern Function For Uniform Discrete Line Array



Notes On Pattern Function For Discrete Line Array
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one main lobe if , which causes ambiguity
(called grating lobes).

General trade-offs in array design:
1)Want L large so that beamwidth is small and resolution is good
2)Want λ≤d to avoid grating lobes.

3)Since L=Nd, or N=L/d, increasing L and decreasing d
Both cause N to increase, which costs more money



• Shading reduces sidelobe levels at the expense of widening the 
main lobe.

• For other aperture functions:

First sidelobe

Aperture         ψ3dB ,degrees                  level,         dB

Rectangular              50λ/L -13.3

Circular                     58λ/L -17.5

Parabolic                   66λ/L -22.0

Triangular                  73λ/L -26.5 

Effects of Array Shading 
(Non-Uniform Aperture Function)



Beam Steering
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Beam Steering For Discrete Arrays
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The phase shift at element n is equivalent to a time shift:

The steered aperture function becomes

The steered physical angle is 
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Effect Of Beam Steering On Main Lobe Width

Beam steering produces a projected
aperture. Since reducing the aperture 
increases the beam width, beam steering 
causes the width of the (steered) main 
lobe to increase. The lobe distorts (fattens) 
more on the side of the beam toward 
which the beam is being steered,



Beam Steering: An Example
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Beam Steering: An Example (Cont’d)

As an example, take N=8, (d=λ/2).
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Beam Steering: An Example (Cont’d)
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Directivity Index For A Discrete Line Array

DI for a discrete line array, broadside and endfire with N=9.
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Array Gain: Discrete Line Array
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Array Gain: Discrete Line Array (Cont’d)

Nine-element vertical line array gain versus elevation steering
angle in a surface-generated ambient noise field
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