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Homework No. 1
Jorge A. Ramirez

Define constants

Lv:=2500000;Rv:=461.5;Cp:=1004;Rd:=287;g:=9.81;rhow:=1000;
epsilon:=0.622;

Lv := 2500000

Rv := 461.5

Cp := 1004

Rd := 287

g := 9.81

rhow := 1000

3 := 0.622

Define potential temperature equation.
theta:=(T,p)->T*(100000/p)^(Rd/Cp);

q := (T, p )/T 
Z
\

100000

p

]
_

Z
\

Rd

Cp

]
_

Ideal Gas Law.
rho:=(p,T,R)->p/R/T;

r := (p, T, R )/
p

R T

Poisson equation for pressure following a dry adiabatic process

p2:=(T,thetao)->10^5*(T/thetao)^(Cp/Rd);

p2 := (T, thetao)/100000 
Z
\

T

thetao

]
_

Z
\

Cp

Rd

]
_

Clausius-Clapeyron equation for saturation vapor pressure

es:=(T)->611*exp(-Lv/Rv*(1/T-1/273.15));

es := T/611 e

Z
[
[
\K

Lv 
Z
\

1

T
K

1

273.15

]
_

Rv

]
^
^
_

Saturation mixing ratio

ws:=(T,p)->0.622*es(T)/p(T,thetao);

ws := (T, p )/
0.622 es(T )

p (T, thetao)
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Homework No. 1
1.         At a climate station, the following measurements are made: air pressure = 1011.0 hPa, air 

temperature = 25 ∫C, and dew point temperature = 20 ∫C.  Calculate the corresponding vapor pressure, 

relative humidity, specific humidity, and air density.

po:=101100; To:=273.15+25; Td:=273.15+20;
po := 101100

To := 298.15

Td := 293.15

Compute actual vapor pressure. Use definition of dew point temperature to do so.

e:=es(Td);
e := 2364.037507

Compute Relative Humidity:

rh:=e/es(To)*100;
rh := 73.35244849

Compute water vapor mixing ratio:

w:=0.622*e/(po-e);
w := 0.01489256085

w:=0.622*e/po;
w := 0.01454432571

Compute* Specific* Humidity:

q[h]:=w/(1+w);
q

h
:= 0.01433582086

Compute density of moist air,

r
m

:=

po 
Z
\ 1K

0.378 e

po

]
_

Rd To

rho[m]:=po/Rd/To*(1-0.378*e/po);
r

m
:= 1.171058857

2.      A sample of moist air has a temperature of 280 ∫K at a pressure of 900 hPa, with a mixing ratio of

5g/kg.  Compute the following quantities for this sample: a) virtual temperature; b) absolute humidity; 

c) specific humidity; d) relative humidity; e) dew point temperature; f) potential temperature; and g) 

equivalent potential temperature.

To:=280; po:=90000; w:=0.005;
To := 280

po := 90000

w := 0.005

Virtual Temperature:

Tv :=
T

1K
(1K 3 ) e

p

=
T

1K
(1K 3 ) w

3
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Tv:=To/(1-(1-epsilon)*w/epsilon);
Tv := 280.8533970

To compute absolute humidity we use the ideal gas law applied to the water vapor. However, we 

need to obtain the actual water vapor pressure first as  e :=
w p

o

3
  and r

v
:=

e

To Rv

e:=w*po/epsilon; rho[v]:=e/To/Rv;
e := 723.4726688

r
v
:= 0.005598766977

Specific Humidity:

q[h]:=w/(1+w);
q

h
:= 0.004975124378

Relative Humidity:

rh:=e/es(To)*100;
rh := 72.89059549

Compute Dew Point temperature. Solve by trial and error first:

Td:=fsolve(es(T)-e,T, 273.15..To);
Td := 275.4971936

Obtain Td by explicitly solving for it:

Td := T/
1

1

273.15
K

Rv ln
Z
\

1 w po

611 3

]
_

Lv

Td:=1/(1/273.15-Rv/Lv*ln(w*po/611/epsilon));
Td := 275.4971936

Compute Potential Temperature using potential temperature equation defined above:

thetao:=evalf(theta(To,po));
thetao := 288.5613165

Parcel temperature at the Lifting Condensation Level following an adiabatic ascent. At the LCL, the 

initial mixing ratio is equal to the saturation mixing ratio at the pressure of the LCL and at a parcel 

temperature corresponding to an adiabatic ascent.Solve using trial and error.

Ts:=fsolve(ws(TT,p2(TT,thetao))-w=0,TT,273.15..To);
Ts := 274.5343525

Parcel pressure at the Lifting Condensation Level following an adiabatic ascent. Obtain ps using the 

Poisson equation defined above.

ps:=p2(Ts,thetao);
ps := 84002.60411

Compute equivalent potential temperature as:

q
e
:= (q, T, p )/q e

Z
\

Lv ws (T, p )

Cp T

]
_

Define equivalent potential temperature equation:
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thetae:=(thetat,TT,pp)->thetat*exp(Lv*ws(TT,pp)/Cp/TT);

thetae := ( thetat, TT, pp )/thetat e

Z
\

Lv ws (TT, pp )

Cp TT

]
_

Evaluate equivalent potential temperature equation:

thetae(thetao,Ts,ps);
301.9489127

3.         Derive expressions for the vertical distributions of pressure, p(z), and density, r (z ), of an 

atmosphere whose temperature decreases linearly with elevation at a rate given by G. Graph your 

results.

Vertical pressure distribution in a hydrostatic atmosphere:

d

dz
 p (z ) =Kr (z ) g

Use ideal gas law

r (z ) :=
p (z )

R T (z )
and substitute in hydrostatic equation to obtain:

d

dz
 p (z ) =K

g p (z )

R T (z )

Integrating this equation yields:

ln (p (z ) ) := Kln
0
p
0
z
o

1 1
K

g 

a
b
b
c

zo

z

1

T (z )
dz

R
However, in order to integrate the right hand side we must know the variation of ambient temperature 

with elevation, which is given by:

T (z ) := T
o
KG 

0
zK z

o

1

Substituting and integrating obtain:

ln (p (z ) ) := Kln
0
p
0
z
o

1 1
K

g 

a
b
b
b
c

zo

z

1

T
o
KG 

0
zK z

o

1 dz

R

p (z ) := p
0
z
o

1
 

Z
[
\

T
o
KG 

0
zK z

o

1

T
0
z
o

1
]
^
_

Z
\

g

R G

]
_
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The above result is the vertical variation of pressure in a hydrostatic atmosphere and for a linear 

temperature variation of temperature with elevation.

Using the ideal gas law to substitute density for pressure obtain:

r (z ) := r
0
z
o

1
 

Z
[
\

T
o
KG 

0
zK z

o

1

T
0
z
o

1
]
^
_

Z
\

g

R G
K 1

]
_

These results can be graphed in dimensionless form for a given lapse rate, for example, 0.006 K/m, as 

follows:

To:=300;Rd:=287;g:=9.81;Gamma:=0.006;zo:=0;
To := 300

Rd := 287

g := 9.81

G := 0.006

zo := 0

rho:=z->((To-Gamma*(z-zo))/To)^(g/Rd/Gamma-1);

r := z/
Z
\

ToKG (zK zo )

To

]
_

Z
\

g

Rd G
K 1

]
_

p:=z->((To-Gamma*(z-zo))/To)^(g/Rd/Gamma);

p := z/
Z
\

ToKG (zK zo )

To

]
_

Z
\

g

Rd G

]
_

plot([p(z), rho(z)],z=0..50000);
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4.         Moist air at 1000 hPa and 25 ∫C has a wet-bulb temperature of 20 ∫C.  Find the dew point 

temperature.  If this moist air were expanded until all the moisture condensed and fell out and then 

compressed to 1000 hPa, what would be the resulting temperature? Assume this process is adiabatic 

while the parcel is unsaturated, and moist adiabatic while the parcel is saturated.

From the definition of wet bulb temperature, and the definition of dew point temperature we can obtain 

the following equation:

wo := ws (Tw, p )C
Cp (TwKT )

Lv
=
3 es(Td )

p

which can be solved for Td as indicated below.

po:=100000;Tw:=273.15+20;To:=273.15+25;
po := 100000

Tw := 293.15

To := 298.15

Compute dew point temperature:

Td:=fsolve(epsilon*es(Tw)/po+Cp*(Tw-To)/Lv-epsilon*es(T)/po, T);
Td := 290.8390699

Compute potential temperature:

thetaoo:=evalf(theta(To,po));
thetaoo := 298.15

evalf(theta(298.15,100000));
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298.15

epsilon*es(Td)/po;
0.01269631326

Finally, we are asked to compute the equivalent potential temperature:

q
e
:= q e

Z
[[
\

Lv ws
0Ts, ps

1

Cp Ts

]
^̂
_

Thus, we need to solve for Ts and ps, as done in Problem 2 above.

thetao:=evalf(theta(To,po)); 
thetao := 298.15

Ts:=fsolve(ws(TT,p2(TT,thetao))-epsilon*es(Td)/po,TT,289..290);
Ts := 289.1799353

ps:=p2(Ts,thetao);
ps := 89864.84127

thetae:=(thetat,TT,pp)->thetat*exp(Lv*ws(TT,pp)/Cp/TT);

thetae := ( thetat, TT, pp )/thetat e

Z
\

Lv ws (TT, pp )

Cp TT

]
_

thetae(thetao,Ts,ps);
332.5934189

5.         The equivalent potential temperature of an unsaturated parcel of surface air is 340 ∫K, and its 

potential temperature is 300 ∫K. If the ambient air temperature at the lifting condensation level is 295 

∫K, compute the buoyancy force acting on the parcel at that level. Assume the surface is at a pressure of

1000 hPa. State all your assumptions.

Fb := g 

Z
[
\

r
a

r
p

K 1

]
^
_ = g 

Z
\

Tp

Ta
K 1

]
_

In order to compute the buoyancy force acting on the parcel at the LCL using the above equation, we 

must find the temperature of the parcel at the LCL. Assume that the ascent to LCL occurs adiabatically.

Thus, potential temperature and mixing ratio are conserved. 

At the LCL the following equation holds:

w
o

:= w
s

0
T

s
, p

s

1
=
3 e

s

0
T

s
, p

s

1

p
s

But, we do not know wo, nor Ts, nor ps. Thus, we need 2 additional equations. However, we know the 

equivalent potential temperature, which we can use as one of the 2 equations:

q
e
:= q e

Z
[[
\

Lv ws
0Ts, ps

1

Cp Ts

]
^̂
_

The final equation is the potential temperature equation:
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q := T
s
 

Z
[
\

100000$1

p
s

]
^
_

Z
[
\

R

Cp

]
^
_

Putting these equations together leads to:

q
e
:= q e

Z
[[
\

Lv 3 es
0Ts

1

ps Cp Ts

]
^̂
_

= q e

Z
[
[
[
[[
\

1 Lv 3 es
0Ts

1

100000 

Z
[
\

Ts

q

]
^
_

Z
[
\

Cp

R

]
^
_

 Cp Ts

]
^
^
^
^̂

_

In the above equation, potential temperature and equivalent potential temperature are known. The only 

unknown quantity is the parcel temperature at the LCL, which is what we need. We can solve this 

equation by trial and error. This is done below:

theta:=300;Ta:=295;
q := 300

Ta := 295

thetae:=Ts->theta*exp(Lv*epsilon*es(Ts)/((Ts/theta)^(Cp/Rd)*10^5)
/Cp/Ts);

thetae := Ts/q e

Z
[
[
[
\

1

100000
 

Lv 3 es (Ts )

Z
\

Ts

q

]
_

Z
\

Cp

Rd

]
_

 Cp Ts

]
^
^
^
_

Ts:=fsolve(thetae(Tss)-340,Tss,290..300);Ta:=295;
Ts := 291.5106111

Ta := 295

Buoyancy force per unit mass of parcel in N/kg:

F[B]:=g*(Ts/Ta-1);
F

B
:= K.1160369670


