Generate Interpolation of F Function

Velocity		Distance	Time	Acceleration	F Function
	0	1	2	3	4
0	500	$1.995 \cdot 10^{4}$	19.962	16.98	1.472.104
1	550	$1.854 \cdot 10^{4}$	17.285	20.55	1.472.104
2	600	$1.726 \cdot 10^{4}$	15.054	24.45	...

Determine Critical Ranges

$\mathbf{R}_{\text {Critical }}\left(\mathbf{V}_{\mathbf{0}}, \mathbf{V}_{\mathbf{F}}, \mathbf{n}, \mathbf{B C}\right):=\operatorname{root}\left[\mathbf{v}_{\mathbf{0}} \cdot\left(1-\frac{3 \cdot \mathbf{n} \frac{\mathbf{R}}{\mathbf{y d}}}{\frac{\mathbf{F 0}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{B C}\right)}{\mathbf{f t}}}\right)^{\frac{1}{\mathbf{n}}}-\mathbf{V}_{\mathbf{F}}, \mathbf{R}, 0 \mathbf{y d}, 1000 \mathbf{y d}\right]$ from the standard projectile. This table is in all of my analysis work.

(${ }^{\mathbf{T}}$ Pejsa model exponents. Because zero causes issues and would have to be handled as a special case, I will just assume a very small number, It will make no difference in my solution.

This is a simple root finder that works for this example - it will not work for every case. I could come up with a general solution, but this is sufficient for what I am doing in this example.

$\mathbf{R}_{\text {Breakpoint }}:=\left\lvert\,$| $\zeta \leftarrow\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ |
| :--- |
| for $\mathbf{i \in 0 . . 2}$ |
| for $\mathbf{j} \in 0 . . \mathbf{i}$ |
| $\zeta_{\mathbf{i}} \leftarrow \mathbf{R}_{\mathbf{1}_{\mathbf{j}}}+\zeta_{\mathbf{i}}$ |
| ζ |\(\quad\left(\begin{array}{c}727.5

855.2

1233.5\end{array}\right) \cdot\)| These are the ranges at which the |
| :--- |
| bullet's velocity transitions from |
| one velocity region to another. |\right.

$$
\mathbf{F}_{\mathbf{m}}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{B C}, \mathbf{n}, \mathbf{R}\right):=\mathbf{F O}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{B C}\right)-\left(0.75+0.00006 \cdot \frac{\mathbf{R}}{\mathbf{y d}}\right) \cdot \mathbf{n} \cdot \frac{\mathbf{R}}{\mathbf{y d}} \cdot \mathbf{f t}
$$

$\mathbf{D}\left(\mathbf{n}, \mathbf{v}_{\mathbf{0}}, \mathbf{B C}, \mathbf{R}\right):=|$| $\mathbf{F 1} \leftarrow \mathbf{F}_{\mathbf{m}}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{B C}, \mathbf{n}, \mathbf{R}\right)$ |
| :--- |
| $\left[\frac{\frac{41.68}{\left(\frac{\mathbf{v}_{\mathbf{0}}}{\frac{\mathbf{t t}}{\mathbf{s}}}\right)}}{\left.\frac{1}{\frac{\mathbf{R}}{\mathbf{y d}}-\frac{1}{\frac{\mathbf{F 1}}{\mathbf{f t}}}}\right]^{2}} \mathbf{i n} \quad\right.$ in |

This is the formula Pejsa lists in his Appendix. He uses different formulas for Fm throughout the book.

- FO- 0.75. $\mathbf{n} \cdot \mathbf{R}$
- $\mathbf{F O}$ - $0.78 \cdot \mathbf{n} \cdot \mathbf{R}$
- $\mathbf{F O}=0.80 \cdot \mathbf{n} \cdot \mathbf{R}$
- $\mathbf{F O}-(0.75+0.00006 \mathbf{R}) \cdot \mathbf{n} \cdot \mathbf{R}$

I found this very irritating as I tried to duplicate his results.

$$
\mathbf{v}_{\mathbf{C}}:=\mathbf{v}_{\text {Critical }}\left[\mathbf{n 1},\left(\begin{array}{c}
\mathbf{v}_{\mathbf{0}} \\
\mathrm{CritVel}_{0} \\
\text { CritVel }_{1}
\end{array}\right), \mathbf{B C}, \mathbf{R}_{\mathbf{1}}\right]=\left(\begin{array}{c}
0.649 \\
0.265 \\
1.267
\end{array}\right) \cdot \frac{\mathbf{n}}{\mathbf{y n}} \begin{aligned}
& \text { These are the downward velocities of the } \\
& \text { projectile at the end of each of the critical } \\
& \text { velocity regions. }
\end{aligned}
$$

$\mathbf{D}_{\mathbf{R}}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{B C}, \mathbf{R 1}\right):=\mid$

$$
\begin{aligned}
& \mathbf{d 1} \leftarrow \mathbf{D}\left(\mathbf{n 1}_{0}, \mathbf{v}_{\mathbf{0}}, \mathbf{B C}, \boldsymbol{\operatorname { m i n }}\left(\mathbf{R 1}, \mathbf{R}_{\text {Breakpoint }_{0}}\right)\right) \\
& \mathbf{d} \mathbf{2} \leftarrow \mathbf{D}\left(\mathbf{n l}_{1}, 1400 \frac{\mathbf{f t}}{\mathbf{s}}, \mathbf{B C}, \boldsymbol{\operatorname { m i n }}\left(\mathbf{R 1}-\mathbf{R}_{\text {Breakpoint }_{0}}, \mathbf{R}_{\text {Breakpoint }_{1}}-\mathbf{R}_{\text {Breakpoint }_{0}}\right)\right) \text { if } \mathbf{R 1}>\mathbf{R}_{\text {Breakpoint }} \\
& \mathbf{d v 2} \leftarrow \mathbf{v}_{\mathbf{C}_{0}} \cdot\left(\mathbf{R 1}-\mathbf{R}_{\text {Breakpoint }_{0}}\right) \quad \text { if } \quad \mathbf{R 1}>\mathbf{R}_{\text {Breakpoint }_{0}} \\
& \mathbf{d} 3 \leftarrow \mathbf{D}\left(\mathbf{n 1} \mathbf{1}_{2}, 1200 \frac{\mathbf{f t}}{\mathbf{s}}, \mathbf{B C}, \boldsymbol{\operatorname { m i n }}\left(\mathbf{R 1}-\mathbf{R}_{\text {Breakpoint }_{1}}, \mathbf{R}_{\text {Breakpoint }_{2}}-\mathbf{R}_{\text {Breakpoint }_{1}}\right)\right) \text { if } \mathbf{R 1}>\mathbf{R}_{\text {Breakpoint }} \\
& \mathbf{d v 3} \leftarrow \mathbf{v}_{\mathbf{C}_{1}}\left(\mathbf{R 1}-\mathbf{R}_{\text {Breakpoint }_{1}}\right) \quad \text { if } \quad \mathbf{R 1}>\mathbf{R}_{\text {Breakpoint }_{1}} \\
& \mathbf{d 4} \leftarrow \mathbf{D}\left(0,900 \frac{\mathbf{f t}}{\mathbf{s}}, \mathbf{B C}, \boldsymbol{\operatorname { m i n }}\left(\mathbf{R 1}-\mathbf{R}_{\text {Breakpoint }_{2}}, 10000 \mathbf{y d}-\mathbf{R}_{\text {Breakpoint }_{2}}\right)\right) \text { if } \mathbf{R 1}>\mathbf{R}_{\text {Breakpoint }_{2}} \\
& \text { dv4 } \leftarrow \mathbf{v}_{\mathbf{C}_{2}}\left(\mathbf{R 1}-\mathbf{R}_{\text {Breakpoint }_{2}}\right) \quad \text { if } \quad \mathbf{R 1}>\mathbf{R}_{\text {Breakpoint }_{2}} \\
& \text { d1 + d2 + d3 + d4 + dv2 + dv3 + dv4 }
\end{aligned}
$$

$\mathbf{H}\left(\mathbf{R}, \mathbf{Z}, \mathbf{S}, \mathbf{v}_{\mathbf{0}}, \mathbf{B C}\right):=-\left(\mathbf{D}_{\mathbf{R}}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{B C}, \mathbf{R}\right)+\mathbf{S}\right)+\frac{\left(\mathbf{D}_{\mathbf{R}}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{B C}, \mathbf{Z}\right)+\mathbf{S}\right) \cdot \mathbf{R}}{\mathbf{Z}}$
$\left.\mathbf{M}\left(\mathbf{H}_{\mathbf{m}}, \mathbf{S}, \mathbf{V}_{\mathbf{0}}, \mathbf{B C}\right):=\left\lvert\, \begin{array}{l}\text { "Implementation of Pejsa's Midpoint Formula" } \\ \mathbf{F} \leftarrow \mathbf{F}\left(\mathbf{V}_{\mathbf{0}}, \mathbf{B C}\right) \\ \mathbf{G} \leftarrow 41.68 \\ \frac{1}{\left(\frac{\mathbf{\mathbf { V } _ { \mathbf { 0 } }}}{\frac{\mathbf{f t}}{\mathbf{s}}} \cdot \sqrt{\frac{\mathbf{H}_{\mathbf{m}}}{\mathbf{i n}}+\frac{\mathbf{s}}{\mathbf{i n}}}\right)}+\frac{2}{\frac{\mathbf{F}}{\mathbf{f t}}}\end{array}\right.\right) \mathbf{y d}$.
$\mathbf{M}_{\text {Range }}:=\mathbf{M}\left(1 \mathbf{i n}, 1.5 \mathbf{i n}, \mathbf{V}_{\mathbf{0}}, \mathbf{B C}\right)=103.635 \cdot \mathbf{y d} \downarrow$
\mathbf{Z} := 200yd
$\mathbf{i}:=0$.. 10
$\mathbf{R}_{\mathbf{i}}:=0.00001 \mathbf{y d}+100 \cdot \mathbf{y d} \cdot \mathbf{i}$

$\mathbf{R}=$| | 0 |
| :---: | ---: |
| 0 | $1 \cdot 10^{-5}$ |
| 1 | 100 |
| 2 | 200 |
| 3 | 300 |
| 4 | 400 |
| 5 | 500 |
| 6 | 600 |
| 7 | 700 |
| 8 | 800 |
| 9 | 900 |
| 10 | $1 \cdot 10^{3}$ |

$\mathbf{S H}:=\sqrt{1+\frac{\frac{\mathbf{S}}{\text { in }}}{\frac{\mathbf{H}_{\mathbf{m}}}{\text { in }}}}$
A zero value will cause an error. Adding a small increment ensures / do not encounter a zero.

Range
Velocity
Height
Data $_{\mathbf{p}}:=\left(\begin{array}{ccc}0 & 2900 & -1.5 \\ 100 & 2662 & 1.70 \\ 200 & 2434 & 0 \\ 300 & 2216 & -7.6 \\ 400 & 2008 & -22.3 \\ 1000 & 1043 & -386.7\end{array}\right)$
From Pejsa page 91.

Bullet Drop (My Implementation, Pejsa Software) Versus Range

Bullet Height Above Line of Sight (My Implementation))
XXX Bullet Height Above Line of Sight (Pejsa)

