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M-dwarf stars – hydrogen-burning stars that are smaller than
60 per cent of the size of the Sun – are the most common class of
star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1.
Recent results have shown that M dwarfs host Earth-sized plan-
ets in great numbers1,2: the average number of M-dwarf planets
that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star3. The nearest such planets known to transit their star are 39
parsecs away4, too distant for detailed follow-up observations to
measure the planetary masses or to study their atmospheres. Here
we report observations of GJ 1132b, a planet with a size of 1.2 Earth
radii that is transiting a small star 12 parsecs away. Our Doppler
mass measurement of GJ 1132b yields a density consistent with
an Earth-like bulk composition, similar to the compositions of the
six known exoplanets with masses less than six times that of the
Earth and precisely measured densities5−11. Receiving 19 times
more stellar radiation than the Earth, the planet is too hot to be
habitable but is cool enough to support a substantial atmosphere,
one that has probably been considerably depleted of hydrogen. Be-
cause the host star is nearby and only 21 per cent the radius of the
Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.
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We used the MEarth-South telescope array12 to monitor the bright-
ness of the star GJ 1132, starting on 28 January 2014. The array con-
sists of eight 40-cm robotic telescopes located at the Cerro Tololo
Inter-American Observatory (CTIO) in Chile, and observes a sample
of M-dwarf stars that are within 33 parsecs of Earth and smaller than
0.35 Solar radii. Since early 2014, the telescopes have gathered data
almost every night that weather has permitted, following a strategy
similar to that of the MEarth-North survey13. On 10 May 2015, GJ
1132 was observed at 25-minute cadence until a real-time analysis
system identified a slight dimming of the star indicative of a possible
ongoing transit, and commanded the telescope to observe the star
continuously at 0.75-minute cadence. These triggered observations
confirmed the presence of a transit with a sharp egress (Fig. 1).
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Figure 1: Photometric measurements
of transits of GJ 1132b. Light curves
from the MEarth-South, TRAPPIST and
PISCO telescopes/imagers were fitted
with a transit model (grey lines) and
a Gaussian process noise model (sub-
tracted from this plot), and averaged
to 1.5-min bins for visual clarity. For
MEarth-South, both the initial triggered
‘discovery’ observations and the sub-
sequent ‘follow-up’ observations are
shown. Labels indicate the transit event
(with E as an integer number of plan-
etary periods) and, for MEarth-South,
the number of telescopes used. The
opacities of binned points are inversely
proportional to their assigned vari-
ances, representing their approximate
weights in the model fit. The raw data
and details of the fit are presented in
Methods; g′ and i′ refer to the wave-
length bandpasses used from the PISCO
imager.
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A search of extant data (4,208 observations over 333 nights) for
periodic signals revealed a 1.6-day candidate that included this event
and reached a detection statistic13 of 9.1σ. Follow-up photometry of
subsequent predicted transits with four MEarth-South telescopes, the
TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope)
telescope14, and the PISCO (Parallel Imager for Southern Cosmology
Observations) multiband imager15 on the Magellan Clay telescope
confirmed the transit signal as being consistent with a planet-sized
object blocking 0.26% of the star’s light. We began precise Doppler
monitoring with the HARPS (High Accuracy Radial Velocity Planet
Searcher) spectrograph16 on 6 June 2015 and gathered 25 radial veloc-
ity measurements for determining the planetary mass (Fig. 2).

Figure 2: Radial velocity changes over
the orbit of GJ 1132b. Measurements
of the star’s line-of-sight velocity,
taken by the HARPS spectrograph, are
shown phased to the planetary orbital
period determined from the light
curves (orange points, with duplicates
shown in grey). Error bars correspond
to 1σ. The darkness of each point is
proportional to its weight in the model
fit, which is the inverse of its variance
as predicted by a radial velocity noise
model. For a circular orbit, the star’s
reflex motion to the planet has a semi-
amplitude of K? = 2.76± 0.92 m s−1.

The distance to GJ 1132 has been measured through trigonometric
parallax to be 12.04± 0.24 parsecs17, a value that we independently
validate with MEarth astrometry (see Methods). Together with em-
pirical relations among the intrinsic luminosities, masses and radii
of M-dwarf stars18,19, the parallax enables us to estimate the mass
and radius of GJ 1132. These estimates are not biased by physically
associated luminous companions, which are ruled out by published
photometry results and the HARPS spectra. Likewise, unassociated
background stars are too faint in archival imaging at the current sky
position of this high-proper-motion star to corrupt our estimates of
the stellar parameters. Table 1 presents the physical properties of the
star (GJ 1132) and planet (GJ 1132b), combining the inferred stellar
properties with analyses of the transit light curves (Fig. 1) and radial
velocity observations (Fig. 2). The radius of the planet is 40% that of
GJ 1214b (ref. 20), a well studied mini-Neptune exoplanet that orbits
with a similar period around a similar host star.
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Table 1: System properties for GJ 1132b
Parameter Value

Stellar parameters
Photometry V = 13.49, J = 9.245, K = 8.322
Distance to star, D? 12.04± 0.24 parsecs
Mass of star, M? 0.181± 0.019M�
Density of star, ρ? 29.6± 6.0 g cm−3

Radius of star, R? 0.207± 0.016R�
Luminosity of star, L? 0.00438± 0.00034L�
Effective temperature, Teff 3270± 140 K
Metallicity, [Fe/H] −0.12± 0.15
Age of star, τ? > 5 Gyr

Transit and radial velocity parameters
Orbital period, P (days) 1.628930± 0.000031
Time of mid-transit, t0 (BJDTDB; days) 2457184.55786± 0.00032
Eccentricity, e 0 (fixed)
Planet-to-star radius ratio, Rp/R? 0.0512± 0.0025
Scaled orbital distance, a/R? 16.0± 1.1
Impact parameter, b 0.38± 0.14
Radial velocity semi-amplitude, K? 2.76± 0.92 m s−1

Systemic velocity, γ? +35± 1 km s−1

Planet parameters
Radius of planet, Rp 1.16± 0.11R⊕
Mass of planet, Mp 1.62± 0.55M⊕
Density of planet, ρp 6.0± 2.5 g cm−3

Surface gravity on planet, gp 1170± 430 cm s−2

Escape velocity, Vesc 13.0± 2.3 km s−1

Equilibrium temperature, Teq

assuming Bond albedo of 0.00 579± 15 K
assuming Bond albedo of 0.75 409± 11 K

Transit and radial velocity parameters were estimated from a Markov chain

Monte Carlo (MCMC) analysis, including an external constraint on the stellar

density when deriving P, t0, Rp/R?, a/R?, and b (see Methods). Planetary

properties were derived from the combined stellar, transit, and radial velocity

parameters. L�, luminosity of the Sun; M�, mass of the Sun; R�, radius of

the Sun; BJDTDB, Barycentric Julian Date in the Barycentric Dynamical Time

system; a, orbital semimajor axis; M⊕, mass of Earth; R⊕, radius of Earth.
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GJ 1132b’s average density resembles that of the Earth, and is well
matched by a rock/iron bulk composition. A theoretical mass-radius
curve21 for a two-layer planet composed of 75% magnesium silicate
and 25% iron (by mass) is consistent with our estimates for GJ 1132b
(Fig. 3). This model assumes that the core is pure iron, the mantle is
pure magnesium silicate, and the interior contains no water21. These
simplifications mean that the iron fraction should not be taken as ab-
solute; the model simply represents a characteristic mass-radius locus
that matches Earth and Venus. This same composition also matches
the masses and radii of Kepler-78b (refs 8, 9), Kepler-10b (ref. 7),
Kepler-93b (ref. 10), Kepler-36b (ref. 6), CoRoT-7b (ref. 5), and HD
219134b (ref. 11) to within 1σ. All of these planets are smaller than
1.6 Earth radii, a transition radius above which most planets require
thick hydrogen/helium envelopes to explain their densities22. At the
1σ lower bound of GJ 1132b’s estimated mass, models23 indicate that
replacing only 0.2% of the rock/iron mix with a hydrogen/helium
layer would increase the planet’s radius to 1.4 times that of the Earth,
substantially larger than the observed value. Detection of GJ 1132b’s
mass is currently only at the 3σ level, but continued Doppler moni-
toring will shrink the 35% mass uncertainty and enable more detailed
comparison with other planets and compositional models.

We searched for additional planets both as other transits in the
MEarth-South light curve and as periodic signals in the HARPS
residuals. Although we made no notable discoveries, we highlight
that compact, coplanar, multiple-planet systems are common around
small stars24,25. Further exploration of the GJ 1132 system could
reveal more, potentially transiting, planets.

As a relatively cool rocky exoplanet with an equilibrium tem-
perature between 580 K (assuming a Bond albedo of 0) and 410 K
(assuming a Venus-like Bond albedo of 0.75), GJ 1132b may have re-
tained a substantial atmosphere. At these temperatures, the average
thermal speeds of atoms or molecules heavier than helium are less
than one-eighth of the escape velocity, suggesting an atmosphere
could be stable against thermal escape. This is not the case for the
other rocky exoplanets for which precise densities are known, all
of which are considerably hotter. The rocky planet Kepler-78b (refs
8, 9), which is comparable in size and density to GJ 1132b, receives
200 times more irradiation than GJ 1132b. Whether the atmosphere
of GJ 1132b was initially dominated by hydrogen/helium-rich gas
accreted from the primordial nebula or by volatiles outgassed from
the planetary interior, its composition probably evolved substantially
over the age of the system, which we estimate to exceed 5 billion
years (gigayears, Gyr) (see Methods). Irradiated well beyond the
runaway greenhouse limit26, surface water would extend up to high
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Figure 3: Masses, radii, and distances
of known transiting planets. a, The
radius and mass of GJ 1132b (orange)
are shown, along with those of other ex-
oplanets (grey). Also shown are mass-
radius curves predicted by theoretical
models21 for planets composed of 100%
H2O (blue line), and for two-component
planets composed of MgSiO3 on top
of Fe cores that are 0% (light brown),
25% (darker brown) or 50% (red) of the
total mass. Planets with smaller frac-
tional mass and radius uncertainties are
darker. b, Symbol area is proportional
to transit depth. In comparison with
other transiting exoplanets, those with
masses detected at > 2.5σ (black) and
those without masses detected at such
level (blue), GJ 1132b is the most acces-
sible terrestrial planet for spectroscopic
observations of its atmosphere, owing
to the proximity and small size of its
parent star.

altitudes where it could be destroyed by photolysis and its hydrogen
rapidly lost to space. When the star was young and bright at ultravi-
olet wavelengths, an atmosphere with high concentrations of water
could lose hydrogen at the diffusion limit, of the order of 10

13 atoms
per cm2 per second or 10 Earth oceans per gigayear. Depending on
surface weathering processes, the oxygen left behind might persist as
O2 in the atmosphere26,27. In this scenario, water would constitute a
trace component in an atmosphere otherwise dominated by O2, N2,
and CO2. However, large uncertainties in the size of the initial hydro-
gen reservoir, in the history of the star’s ultraviolet luminosity, in the
contribution of late volatile delivery, and in the evolutionary effect of
the system’s likely spin-orbit synchronization preclude firm a priori
statements about the composition of the atmosphere.

Future spectroscopic investigation of the planetary atmosphere
will be enabled by the proximity and small radius of the star. When
viewed in transmission during transit, one scale height of an O2-rich
atmosphere would overlap 10 parts per million (p.p.m.) of the stellar
disk. For comparison, a 60-orbit Hubble Space Telescope transmis-
sion spectrum of GJ 1214b achieved a transit depth precision of 25

p.p.m. in narrow wavelength bins28. Deeper Hubble observations of
GJ 1132, which is 50% brighter than GJ 1214, would have the poten-
tial to detect molecular absorption features in GJ 1132b’s atmosphere.
Observations with the James Webb Space Telescope (JWST), set to
launch in 2018, could measure the transmission spectrum over a
broader wavelength range and require less telescope time. The long-
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wavelength capabilities of JWST may also allow it to detect the ther-
mal emission from the planet; such emission represents 40-130 p.p.m.
of the system flux at a wavelength of 10 µm, and 160-300 p.p.m. of
the flux at 25 µm (for the range of albedos considered above). Pro-
vided that the planet is not too cloudy, combined transmission and
emission spectra could ascertain the abundances of strongly absorb-
ing molecular species. If such constraints on the dominant infrared
opacity sources can be obtained, observations of the planet’s ther-
mal phase curve would be sensitive to complementary information,
including the total atmospheric mass29,30. Such observations will in-
form our understanding of how the strong tides and intense stellar
activity of the M-dwarf planetary environment influence the evolu-
tion of terrestrial atmospheres. This understanding will be important
for the long-term goal of looking for life on planets orbiting nearby
small stars.

Received 3 August; accepted 23 September 2015; doi:10.1038/nature15762.
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Methods

Distance to the star GJ 1132’s coordinates are 10:14:51.77 -47:09:24.1
(International Celestial Reference System, epoch 2000.0), with proper
motions of (-1046; 416) milliarcseconds (mas) per year and a trigono-
metric parallax of π = 83.07± 1.69 mas, as determined by the RE-
CONS (Research Consortium on Nearby Stars) survey17. We qual-
itatively confirm this parallax with independent observations from
MEarth-South, using analyses like those that have been applied to
the northern survey31. The motion of GJ 1132 relative to background
stars in MEarth-South imaging closely matches the prediction made
by the RECONS parallax (Extended Data Fig. 1). We do not quote the
value of π derived from MEarth-South because we have not yet cross-
validated the astrometric performance of the system against other
measurements. Literature photometric observations of GJ 1132 in-
clude photoelectric photometry (U = 16.51± 0.03, B = 15.17± 0.03)32,
charge-coupled device (CCD) photometry (V = 13.49 ± 0.03,
RC = 12.26± 0.02, IC = 10.69± 0.02)17, 2MASS near-infrared photom-
etry (J = 9.245± 0.026, H = 8.666± 0.027, Ks = 8.322± 0.027)33, and
WISE infrared photometry (W1 = 8.170± 0.023, W2 = 8.000± 0.020,
W3 = 7.862± 0.018, W4 = 7.916± 0.184). The colour (V − Ks =

5.168± 0.040) and absolute magnitude (MV = 13.088± 0.054) of GJ
1132 are consistent with those of single M4V dwarfs34.

Extended Data Figure 1: Astrome-
try of GJ 1132 from MEarth-South.
Measurements of the star GJ 1132’s
position in MEarth-South images, along
the directions of ecliptic latitude (top)
and longitude (bottom). As described
elsewhere31, a fitted offset between
data gathered at a field rotation of 0◦

(blue) and 180◦ (green) has been re-
moved. The published RECONS proper
motion17 has been subtracted, and a
model fixed to the published 83.07 mas
parallax (black line) closely matches the
MEarth-South observations.

http://www.nature.com/reprints
http://www.nature.com/reprints
zkbt@mit.edu
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Metallicity of the star Before discovering the planet, we gathered a
near-infrared spectrum of GJ 1132 with the FIRE spectrograph on the
Magellan Baade telescope. We shifted the spectrum to a zero-velocity
wavelength scale35, measured equivalent widths and compared the
spectra by eye with solar metallicity spectral type standards35. The
spectrum indicates a near-infrared spectral type of M4V-M5V (Ex-
tended Data Fig. 2), slightly later than the optical spectral of M3.5V
listed in the PMSU (Palomar/Michigan State University) catalogue36.
Using the measured equivalent width of the K-band sodium feature
(4.7Å) and an empirical calibration35 that has been corrected for its
known temperature dependence37, we estimate the stellar metallicity
to be [Fe/H] = −0.12± 0.15 and quote this value in Table 1. For com-
parison, a relation using additional spectral regions and calibrated
for stars of GJ 1132’s spectral type and earlier38 also yields [Fe/H] =
-0.1, while one for GJ 1132’s spectral type and later39 yields [Fe/H] =
-0.2 (both with uncertainties of about 0.15 dex).

Extended Data Figure 2: Near-infared
spectrum of GJ 1132. Observations of
GJ 1132’s spectrum obtained with the
FIRE spectrograph on the Magellan
Baade telescope are compared in the
z, J, H and K telluric windows (left
to right, top to bottom) to the solar-
metallicity composite spectral type
standards from ref. 35. The FIRE spec-
tra have been smoothed to match the
R = 2, 000 resolution of the standards.
GJ 1132’s near-infrared spectral type is
M4V-M5V.

Mass of the star Dynamical mass measurements of M-dwarfs show
that tight relationships exist between near-infrared absolute mag-
nitudes and stellar mass18. We use these calibrations to calculate
masses from the J, H and K magnitudes (after converting between
the 2MASS and CIT photometric systems). Taking the mean of these
masses and adopting an uncertainty that is the quadrature sum of the
2.7% error propagated from the measurement uncertainties and the
10% scatter we assume for the relations, we adopt a stellar mass of
M? = 0.181± 0.019M�, where M? is the mass of the star and M� is
the mass of the Sun.
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Radius of the star From this mass, we use an empirical M? − ρ?
relation19 calibrated to eclipsing binary systems to estimate a density
of ρ? = 29.6± 6.0 g cm−3, corresponding to R? = 0.207± 0.016R�
for GJ 1132. We adopt those values, noting that they agree with two
other mass-radius relations: the radius predicted by long-baseline op-
tical interferometry of single stars40 is R? = 0.211± 0.014R�, and that
by the Dartmouth evolutionary models41 is R? = 0.200± 0.016R� (for
[Fe/H] = -0.1, assuming a uniform prior on age between 1 Gyr and
10 Gyr). The quoted errors do not include an assumed intrinsic scat-
ter in any of the mass–radius relations, but the consistency among
the three estimates suggests that any contribution from scatter would
be smaller than the uncertainty propagated from the stellar mass.

Bolometric luminosity of the star We combine the parallax and pho-
tometry with bolometric corrections to determine the total lumi-
nosity of GJ 1132, testing three different relations to estimate bolo-
metric corrections from colour. The Mann et al. relation42 between
BCV and V − J colour yields a bolometric luminosity of 0.00402L�.
The Leggett et al. relation43 between BCK and I − K colour yields
0.00442L�. The Pecaut and Mamajek compilation of literature bolo-
metric corrections44, when interpolated in V − Ks colour to determine
BCV , yields 0.00469L�. We adopt the mean of these three values,
with an uncertainty that is the quadrature sum of the systematic er-
ror (the 6.3% standard deviation of the different estimates) and the
uncertainty propagated from the measurement uncertainties (about
5% in all three cases), as our final estimate of the bolometric lumi-
nosity: L? = 0.00438± 0.00034L�. From this, we calculate the stellar
effective temperature as Teff = 5772K× (L?/L�)1/4 × (R?/R�)−1/2 =

3270± 140K. The luminosity and temperature we infer37 from the
FIRE spectra (L? = 0.0044± 0.001L�, Teff = 3130± 120K) are consis-
tent with the quoted values.

Extended Data Figure 3: Photometric
starspot modulations of GJ 1132.
MEarth-South photometry (with dots
representing single pointings and error
bars representing ±1σ uncertainty
ranges on weighted averages over
four-day bins) probes starspots that
are rotating in and out of view, and
indicates that GJ 1132 has a rotation
period of approximately 125 days. The
rotational modulation was identified
using a methodology similar to that
used in previous MEarth work48.
∗UVW velocities have been updated to use the proper motion
stated above. The values given in the published article were
based on the proper motion from ref. 64, and were also
with respect to the local standard of rest. We adopt the solar
velocities of ref. 65.

Age of the star GJ 1132’s motion through the Galaxy of (ULSR, VLSR,
WLSR) = (-47, -32, -2) km s−1 is consistent with a kinematically older
stellar population∗. M4 dwarfs tend to show strong Hα emission for
about 4 Gyr45; the lack of Hα emission in the HARPS spectrum indi-
cates that GJ 1132 is probably older than that. The star instead shows
weak Hα absorption, which is an indicator of non-zero magnetic ac-
tivity in stars as cool as this46. We detect emission in the Ca II H line,
with a weak intensity that is comparable to that of Barnard’s Star and
other slowly rotating stars in the HARPS M-dwarf sample47. Apply-
ing published methods48 to the MEarth-South photometry, we mea-
sure a rotation period of 125 days for GJ 1132 (Extended Data Fig.
3). M-dwarfs spin more slowly as they age, with less massive stars
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reaching longer rotation periods at old ages48. Therefore, the rotation
period suggests that the system could be almost as old as Barnard’s
Star (0.16 M�), which has a 130-day rotation period49 and is 7-13 Gyr
old50. GJ 1132’s age is probably comparable to or greater than that
of Proxima Centauri (0.12 M�), which has an 83-day period49,51 and
is 5-7 Gyr old, assuming it to be coeval with the gyrochronologically
and asteroseismically age-dated α Centauri system52. From these
comparisons, we conclude that GJ 1132 is probably older than 5 Gyr.

Assumption of a circular orbit Calculating the timescale for tidal

circularization53 as tcirc = 2PQ
63π ×

Mp
M?
×

(
a

Rp

)5
, assuming a tidal

quality factor of Q = 100 appropriate for rocky exoplanets, yields
4× 105 years for GJ 1132b. This is much shorter than the age of the
system; therefore, we assume the eccentricity to be negligible and fix
it to 0 in our estimation of the other planetary properties. Perturba-
tions from other (undetected) planets in the system could potentially
induce a small equilibrium eccentricity.

Photometric observations and analysis The high-cadence light curves
analysed here were gathered over four nights using six telescopes on
three mountains. The triggered event (event E = −19, relative to the
ephemeris in Table 1) was collected on MEarth-South telescope 3. At
the time of this triggered detection, 296 stars in the MEarth-South
sample had been observed at least 100 times, but only nine of these
stars had been observed as thoroughly as GJ 1132. After identifica-
tion of the periodic signal, we obtained follow-up photometry with
MEarth-South telescopes 2, 3, 4 and 8 on the nights of 23 May 2015,
10 June 2015 and 28 June 2015 (E = −11, 0 and 11). Exposure times
were 18 s, yielding a 47-s cadence for the high-cadence light curves.
We observed the transit on the night of 10 June 2015 (E = 0) with
the TRAPPIST telescope, in a wide I + z bandpass, with exposure
times of 10 s and a cadence of 21 s. We also observed this transit with
the PISCO multiband imager, which was installed on the Magellan
Baade telescope and undergoing a commissioning run, taking 10-s
exposures simultaneously in g′, r′, i′, z′ bandpasses at a cadence of
36 s. We actively defocused Baade, resulting in donut-shaped point
spread functions spreading each star’s light over about 200 pixels.
The PISCO r′ and z′ light curves exhibited unexplained systematics
and were not used for further analysis.

To the high-cadence light curves, we fitted a transit model54 with
the following parameters: orbital period P, time of mid-transit t0,
planet-to-star radius ratio Rp/R?, star-to-orbit radius ratio R?/a, im-
pact parameter b, and separate baseline flux levels for each transit
observed on each telescope. The PISCO and TRAPPIST photome-
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try showed trends that correlated with airmass, so we also included
coefficients for a trend linear with airmass as free parameters. Limb-
darkening was treated with a quadratic approximation, using fixed
coefficients55 calculated from a PHOENIX atmosphere model for a
3,300 K, [Fe/H] = 0, log g = 5 star. These coefficients (u1, u2) were:
(0.1956, 0.3700) for MEarth and TRAPPIST (both approximated as
1
3 i′ + 2

3 z′), (0.4790, 0.3491) for PISCO g′ (approximated as Sloan g′),
and (0.2613,0.3737) for PISCO i′ (approximated as Sloan i′). We per-
formed a Levenberg-Marquardt maximization of the posterior proba-
bility of this model, rejected > 4σ outliers among the data, repeated
the maximization, and increased the per-point uncertainty estimates
until each transit exhibited a reduced χ2 ≤ 1. This resulted in typical
per-point uncertainties of 2.6 (MEarth), 3.6 (TRAPPIST), 1.9 (PISCO
g′), and 1.2 (PISCO i′) mmag. Most light curves showed some ev-
idence for time-correlated noise in their residuals. To marginalize
over the uncertainty introduced by these correlations, we use the
Gaussian process regression package George56 to model each set of
transit residuals as a Gaussian process with non-zero covariance be-
tween the datapoints57. We use a Matérn-3/2 kernel function to de-
scribe this covariance as a function of separation in time, and include
two free parameters per transit: log tgp (where tgp is the correlation
timescale) and log agp (where agp is an amplitude). We mapped the
probability distribution of the model parameters using the emcee
implementation58 of an affine-invariant Markov chain Monte Carlo
(MCMC) sampler59, assuming flat priors on all parameters. Extended
Data Fig. 4 shows raw light curves of individual transits, along with
model curves sampled from the posterior.

The ingress time (τ = 3.7± 1.0 min from first to second contact)
is measured imprecisely in this fit, compared to the total transit du-
ration (Ttot = 47.0± 1.4 min from first to fourth contact). Systematic
astrophysical errors (incorrect limb-darkening, starspots, unidentified
transit timing variations) can bias light-curve estimates of the ingress
time, and therefore also the parameters R?/a and b that depend
strongly on τ. Therefore, we estimate the planet properties without
relying on this ingress measurement, by including external con-
straints on both the stellar mass and the stellar density. We sample
values of M? and ρ? from Gaussian distributions (0.181± 0.019M�
and 29.6 ± 6.0 g cm−3), use Kepler’s Third Law to compute R?/a
from the stellar density and the period, and then calculate b from
the transit duration and these new R?/a samples. We quote the
marginalized values and uncertainties for these and other light-curve
parameters in Table 1. This procedure forces consistency between
the light-curve fit and the inferred stellar properties and shifts the
estimates from R?/a = 0.0738± 0.0092 and b = 0.58± 0.14 (inferred
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from the light curves alone) to the values in Table 1. The effect on
P, t0, or Rp/R? is negligible. If we ignore the external ρ? informa-
tion, the inferred stellar and planetary radii would be consistent with
those in Table 1 but with larger error bars (R? = 0.243± 0.031R� and
Rp = 1.37± 0.22R⊕).

Extended Data Figure 4: Raw transit
light curves of GJ 1132b. Light curves
are shown both unbinned (grey points)
and in five-minute bins (black bars,
representing the ±1σ uncertainty
range for the weighted average in each
bin), and separated by telescope (row)
and transit event (column). Model
curves are shown, with the Gaussian
process noise model conditioned on the
observations, for parameters sampled
from the posterior (green) and for the
maximum likelihood parameters (blue).
This is the complete set of light-curve
data behind the transit parameter fits.Radial velocity observations and analysis We first gathered reconnais-

sance spectra of GJ 1132 with the CHIRON60 spectrograph on the
SMARTS 1.5-metre telescope at CTIO. Once these spectra ruled out
large radial-velocity variations corresponding to binary star compan-
ions, we began observations with the HARPS spectrograph on the
La Silla 3.6-metre telescope. We gathered 25 HARPS spectra of GJ
1132 between 6 June 2015 and 18 July 2015, using an exposure time of
40 min. The spectra span 380 nm to 680 nm in wavelength. For each
observation, we constructed a comparison template by co-adding all
the other spectra and measured the relative radial velocity as the shift
required to minimize the χ2 of the difference between the spectrum
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and this template61,62. Telluric lines were masked using a template
of lines made with a different, much larger, data set. We see no ev-
idence for rotational broadening of the spectra, indicating that the
projected rotational velocity, v sin i, is less than 2 km s−1. The median
of the internal radial velocity uncertainty estimates61 is 3 m s−1 per
observation.

Over the timespan of our observations, these radial velocities are
dominated by the orbital motion of the known transiting planet,
rather than by other planets, blended stellar binaries, or stellar ac-
tivity. The tallest peak in the periodogram of the radial velocities is
consistent with the transit-derived period for GJ 1132b. The line bi-
sectors show no significant correlation with the measured velocities
(Pearson correlation p-value of 0.27) and no clear periodicities. The
Hα equivalent width and the full-width half-maximum of the HARPS
cross-correlation function are not correlated with the velocities (Pear-
son correlation p-values of 0.72 and 0.57).

We fit the velocities with a model corresponding to a circular orbit
for the planet, with flat priors on three free-floating parameters: the
radial velocity semi-amplitude K?, the systemic velocity γ?, and a
stellar jitter term σ?,jitter that is added in quadrature to the internal
velocity uncertainties. We include all terms that depend on σ?,jitter

in the likelihood, as well as the usual χ2 term. P and t0 were fixed
to the values determined from the transit analysis. We use emcee58

to sample from the posterior probability distributions of these pa-
rameters, and quote marginalized uncertainties on K? in Table 1. In
this fit, the value of K? is > 0 in 99.7% of the MCMC samples. The
inferred value of σ?,jitter is smaller than the individual uncertainties
(< 1.9 m s−1 at 68% confidence), and a good fit is obtained if σ?,jitter

is fixed to 0 (χ2 = 26.67 for 23 degrees of freedom). The χ2 of a fit
where both K? and σ?,jitter are fixed to 0 is significantly worse (38.56

for 24 degrees of freedom). As a check, we repeated the MCMC fit
allowing the phase (t0) to float. This radial velocity fit predicted the
known mid-transit times to within 1.5σ (3.0 ± 1.9 h after the true
transit times). Relaxing the assumption of a circular orbit yields in-
ferred distributions of (e cos ω, e sin ω) that are consistent with (0,
0) but substantially increases the uncertainty on the semi-amplitude
(K? = 3.6± 2.4 m s−1). With future Doppler measurements, it will be
possible to measure the planet’s eccentricity and independently test
the assumption we make here that tides damped the eccentricity to
small values.

Transiting exoplanet population comparison Figure 3 compares GJ
1132b to other known transiting exoplanets. Data for this plot were
drawn from the NASA Exoplanet Archive63 on 25 August 2015.
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Egregious errors in the catalogue were replaced with appropriate
literature values. In the mass-radius panel, individual planets are
shaded with a white-to-black greyscale that is inversely proportional(
σM/Mp

)2
+

(
σR/Rp

)2, where σM and σR are the uncertainties on the
planet mass, Mp, and radius, Rp. Planets with precise measurements
are dark, and those with large mass or radius uncertainties are light.
In the distance-radius panel, some planets did not have distances
listed in the Exoplanet Archive. For those systems, we calculated ap-
proximate distances from the J-band magnitudes, estimated stellar
radii, effective temperatures, and a table of bolometric corrections44

(interpolating in Teff to estimate BCJ).

Code availability Analyses were conducted primarily in Python.
Although not cleanly packaged for general use, for the sake of trans-
parency we make the custom code used for transit and radial velocity
fitting available at http://github.com/zkbt/transit. It relies on
three freely available packages: eb (http://github.com/mdwarfgeek/
eb), emcee (http://github.com/dfm/emcee), and George (http://
github.com/dfm/george). Code used to generate the exoplanet popu-
lation comparison is available at http://github.com/zkbt/exopop.
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