
New Calculation of Saturation Specific Humidity
and Saturation Vapor Pressure in the COLA

Atmospheric General Circulation Model

L. Marx

Center for Ocean-Land-Atmosphere Studies
Institute of Global Environment and Society, Inc.

4041 Powder Mill Road, Suite 302
Calverton, MD 20705

E-mail: marx@cola.iges.org

November 2002

Abstract

A new method of computing the saturation specific humidity, qs, and saturation vapor
pressure, es, is presented. This has been recently implemented in the Center for Ocean-Land-
Atmosphere Studies (COLA) atmospheric general circulation model (AGCM). The new method
offers high accuracy extending beyond the observed atmospheric temperature domain and yet is
computationally competitive with most other methods used for this calculation. In addition a
corresponding continuous function for the derivative of es with respect to temperature is also
given. An inverse function to es is available as well. Included are small corrections to es to
assure high accuracy. The design of the implementation permits the user to obtain whatever level
of accuracy and detail might be desired. With this even detailed microphysical calculations with
high computational efficiency can be done with small changes when the need arises.

1

1. Introduction

Water vapor is a key constituent of the atmosphere and plays a significant role in

radiative and thermodynamic processes that affect the evolution of the atmospheric state through

time. Typically water vapor is represented by the variable specific humidity, the amount of water

vapor in the mixture of water vapor and dry air, in both analysis of the atmospheric state as well

as various physically based models describing the evolution of the atmospheric state. For

example, the Center for Ocean-Land-Atmosphere Studies (COLA) atmospheric general

circulation model (AGCM) uses specific humidity to represent water vapor. Numerous physical

processes require the local value of saturation specific humidity, qs, which is the maximum

amount of specific humidity that the air can contain at a given temperature and pressure.

Previously, this calculation has been done in the COLA AGCM in a different way for nearly

every physical process requiring qs. This is undesirable, because a somewhat different

atmospheric state is represented in each process and some moisture may become artificially lost

or created. Furthermore, none of the saturation specific humidity calculations account for the

reduced amount of water vapor as temperatures fall below freezing and ice becomes the

predominant form of condensate. It therefore became necessary to revise the method of

calculating qs in the AGCM to one that is consistent, accurate and computationally efficient.

Other less significant but important dependencies, such as the reduction in qs due to sea surface

salinity, can also be simply addressed as part of this revision.

Calculation of qs is a fairly simple function of atmospheric pressure, p, and saturation

vapor pressure, es. It is the calculation of es, which is usually viewed as a function of

2

atmospheric temperature only, that has caused difficulty in past treatments and has lead to

numerous approximate calculation formulas. Many of these are discussed in Buck (1981) and

will only be summarized here. In the past, detailed computation of es required accounting for

many microphysical dependencies that were first given by the Goff and Gratch (1946) formulas

for values of es over water and ice, which were also shown in List (1949). These formulas were

based on older physical constant standards. Subsequently, Wexler (1976 and 1977) produced

new formulas based on the newer Systemé International (SI) physical constants as well as newer

microphysical theories and measurements with newer instruments. Due to the computational

expense in computing the formulas based on microphysics, other approximate formulas have

been used in atmospheric models. Since most of them have been based on the Goff and Gratch

(1946) formulas or even predate them, they will not be detailed here. Some of the methods,

however, will be briefly reviewed. These include simpler exponential and logarithm formulas,

polynomial fits, and look-up tables with linear interpolation.

Formulas based on exponential functions that sometimes include an additional logarithm

calculation have the advantage that they are generally not domain limited, at least over observed

atmospheric temperatures (&90°C to +70°C). These formulas are usually constructed so that

both the inverse of the function and the derivative of the function can be determined analytically.

The exponential-based formulas are easy to implement in most AGCMs, and two formulas are

used in the COLA AGCM for large scale precipitation processes and separately for land and

water surfaces. This approach can be limited in computational efficiency depending on the local

machine’s EXP (and LOG) function speed. The actual accuracy is dependent on the specific

formulas used. The higher accuracy formulas given by Buck (1981) are probably as accurate as

3

can be done by this approach but still can have errors as large as 0.05%.

Polynomial-based formulas are generally the most computationally efficient on most

machines, but have a more limited domain (typically &50°C to +50°C) and are usually somewhat

less accurate than exponential-based formulas. These are often used where iterative calculations

may require frequent calculation of es and some loss of accuracy can be accepted. In the COLA

AGCM, both the relaxed Arakawa-Schubert (RAS, Moorthi and Suarez, 1992) and Kuo (1965)

convection schemes use separate sixth-order polynomial formulas. When the temperature falls

outside the accepted argument domain, exponential formulas are sometimes used or other

corrective steps are taken. In some cases, an error or error code may be generated. These

contingencies all increase the complexity of implementation. While the domain can be increased

by increasing the order of the polynomial, local accuracy may be reduced along with increasing

the computation time. Local behavior may even cease to be monotonic if not carefully

constructed. In any case the new function values in the original domain will no longer exactly

match the original function values so that extending the domain is even more of a problem.

While constructing the derivative of the function is easy, computing the inverse function can be

involved. Typically the Newton-Raphson method works best, but can require several iterations

for convergence.

Look-up tables using linear interpolation are used where lower accuracy is generally

expected; and while appearing to be computationally efficient, can become quite slow if coded

poorly, as will be shown later. The COLA AGCM uses this method when computing rain

evaporation from convection. While the inverse function can be done by using a hunt/search

algorithm, which will be discussed below, the derivative is discontinuous at each node and thus

4

is not well behaved where convergent calculations are required. Nevertheless, the domain can be

easily extended as needed and some increase in accuracy can be obtained by reducing the

interval.

Changes in computer hardware technology with the use of memory cache along with a

high performance microprocessor suggest an alternative approach to approximating es: cubic

spline fit using a sufficiently small interval can give both a very accurate and reasonably fast

approximation for use in atmospheric modeling, even those involved in detailed microphysics.

For AGCMs, an interval of 1°C provides enough accuracy to accommodate even fairly involved

microphysics while gaining added speed by eliminating multiplicative factors of one. Only

highly detailed microphysical calculations used in such applications as cloud resolving models

might require additional accuracy. In that case, an interval of say 9°C should be more than

adequate to meet these needs while adding no more than 10% computation time on most

computers. This method is generally faster than most of the above methods except for

polynomial approximation where it usually takes from 1.5 to 3 times longer to compute but has

none of the disadvantages and is far more accurate than any of the above methods. All these will

be addressed in the next sections.

2. Implementation

Cubic spline fits are generally done such that the value of the function and its derivative

are continuous at each interval node. This gives a function that is piecewise smooth over its

entire domain as well as its derivative. Since there is often a need to compute both the values of

5

es and its derivative, this approach seems best even though the error over each interval is not

minimized. Instead, decreasing the interval size can be used to reduce the error to whatever

level is desired. While the size of the interval can vary over its domain using this method,

choosing a fixed interval simplifies the computer code necessary to implement the fit and adds to

the efficiency. In addition it will be seen that using a 1°C interval further simplifies the code

while retaining enough accuracy to satisfy most needs. Since the formulas for es are different

over water and ice, a separate fit is needed for each. The choice of which to use when the

temperature falls below freezing can be left to the user. In the COLA AGCM, the value over ice

will always be used for the present time until more sophisticated microphysics are employed.

This will also serve to compensate excess moisture found in the model at lower temperatures.

Attempts to fit between the two over some limited interval may be subject to local conditions that

are not correctly accounted for presently. It also makes it easy to maintain a consistent heat

budget by switching the latent heat calculation from the vaporization value to the sublimation

value when the temperature falls below freezing. Calculation of the values used at each interval

are based on standard software: Numerical Recipes in FORTRAN (Press, et al., 1992) with some

modifications.

The separate formulas for es (in Pascals) over water and ice as given by Wexler (1976 and

1977) as well as Buck (1981) are:

 esw = exp[&2991.2729 t!2 & 6017.0128 t!1 + 18.87643854 & 0.028354721 t
+ 0.17838301×10!4 t2 & 0.84150417×10!9 t3 + 0.44412543×1012 t4
+ 2.858487 ln t] (1)

 esi = exp[&5865.3696 t!1 + 22.241033 + 0.013749042 t & 0.34031775×10-4 t2

+ 0.26967687×10!7 t3 + 0.6918651 ln t] (2)

6

where t is the temperature in K.

Since the formulas are supposed to have the same value at triple point (273.16K), (2) has been

slightly modified so that when using higher precision arithmetic, such as IEEE 64-bit, the

constant term (22.241033) is extended until the resulting value matches as closely as possible the

triple point value from (1) without exceeding it. The exact value for this term becomes machine,

compiler and compiler optimization choice dependent. For example, on the Compaq ES series

with maximum optimization (O5), the value 22.241033076380849 is used. The complexities of

(1) and (2) require use of higher precision arithmetic to retain stable values. Similarly the

resulting cubic spline fits in 64-bit arithmetic retain enough stability and accuracy even at a 1°C

interval that they are usually more accurate and stable than (1) and (2) evaluated in 32-bit

arithmetic.

 As discussed in Numerical Recipes, correct implementation of a cubic spline can be done

by evaluating the function at interval nodes and solving a tridiagonal system to arrive at the

second derivatives at each interval. Over a given domain, the correct solution requires having the

exact value of the first derivative at the domain endpoints. However, if the domain can be

extended, the tridiagonal solution will provide the correct values of the first derivative in the

interior of the domain even when choosing zero for the first derivative at the domain endpoints.

This method relies on decreasingly inaccurate values of the first derivative as one goes further

into the interior. Eventually the roundoff of the arithmetic precision used prevents further error

propagation. For this implementation, 32 extra intervals at each end of the domain are sufficient

to eliminate further error propagation when using 64-bit arithmetic. This can be tested by adding

more intervals and finding that the interior values remain unchanged. Thus when the tables are

7

constructed with these extra intervals, values requiring the use of the extra intervals are

considered out of domain.

Once the tridiagonal system is solved, the spline can be evaluated at each interval based

on the argument value: First the interval index, i, is determined by:

i = (t & tb) · kint + 1 (3)

where t is the argument being evaluated, tb is the lowest domain value (base temperature) of the

spline, and kint is the integer reciprocal of the interval size ∆t.

Then the spline for the interval between i and i+1 may be evaluated

for th = i · ∆t + tb and tR = th & ∆t (the values of t at the interval nodes)

and a = (th & t)/∆t and b = (t & tR)/∆t (the normalized value of t inside the interval)

as:

(4)() ()[]e = a e + b e +
 ()

6
a a e + b b esat s s

2
3

s
3

s() (+ 1) () + 1⋅ ⋅ − ⋅ ′′ − ⋅ ′′i i i i
t∆

()

where esat = approximate value of es at temperature t.
es(i) = value of es at interval node i from (1) or (2)
eOs (i) = 2nd derivative of es at interval node i by tridiagonal solution separately for (1) and

(2)

By this method esat is computed by linear interpolation plus a cubic correction. By using a fixed

interval, some of the terms can be combined before evaluation so that the new terms:

′′ ⋅ ′′ − ′′e * =
)

e and e = e e *s

2

s s
*

s s() () () () ()i i i i i
t(∆
6

give a computationally reduced spline evaluation of:

(5)e a e a e * b e + b e *sat s
* 2

s s
* 2

s) () (+ 1) (+ 1)= ⋅ + ⋅ ′′ + ⋅ ⋅ ′′() ()(i i i i

In addition, if the interval is 1, the evaluation is further simplified since th = i + tb and tR = th & 1

8

as well as a = th & t and b = t & tR. Since the cubic spline can be evaluated analytically to obtain

the derivative, the derivative of (4) reduces to:

(6)() ()[]′ − ⋅ ′′ − ⋅ ′′
−

e =
(e e)

+

6

 1 a e + 3b 1 esat
s s 2

s
2

s
(+ 1) ()

() + 1
i i

i i
t

t
∆

∆
3 ()

where eNsat = approximate value of the 1st derivative of es at temperature t.
Similarly, a computationally reduced version of (6) can also be obtained.

The choice of 1°C interval (or any other interval) is based on using triple point to

determine the base temperature for both spline fits. Thus each node is actually 0.01°C above the

true Celsius temperature value as will be the case in the discussion below. Nevertheless, the small

temperature difference still gives nearly exact results at the true Celsius temperatures. When

choosing an interval, only powers of two (positive or negative) have been used to help preserve

accuracy even though triple point cannot be exactly represented in a binary computer. Since an

interval of 1°C is a simpler formula than any other interval, little is gained by choosing larger

intervals. The only advantage is increased speed in computing the inverse function (see below).

The most efficient way to use the spline method to evaluate esat is to compute as many

values at one time as possible using a single subroutine call or by evaluating directly from the

tables. This helps to keep the table values memory cache resident as long as possible. However

on some machines the control over cache residency may be limited.

While (1) is based on measurements from 0° to 100° C and (2) is based on measurements

from &80° to 0°C, their physical basis is used to extend them to &100°C to allow for unobserved

but potentially possible very cold free atmosphere temperatures. Outside the domain of &100° to

+100°C, the value of &1 is returned to indicate that corrective action should be taken. In the

COLA AGCM, the model is stopped to begin further investigation.

9

It is possible to also compute the inverse function: t as a function of es. This is not as

simple as an analytically based inverse function but can be done such that the exact inverse value

is obtained. Combining code from Numerical Recipes, this is done in two stages:

1. Hunt/Search stage

A. Hunt phase

Starting from a first guess value, the interval index is increased or

decreased by increasing powers of two until the first guess value and new

interval node index value of es(i) bracket the argument value.

B. Search phase

Using a binary search algorithm, the index difference between the two

bracketing indexes is successively reduced by half and the new bracketing

index pair determined. This continues until the bracketing indexes differ

by one. These are the interval node indexes (i, i+1) of the interval

containing the argument value of es. This method works because es is a

monotonically increasing function of temperature.

2. Newton-Raphson stage

Using (5) and the computationally reduced version of (6) and starting with a value

of temperature, t, that is halfway in the interval, the value of t is successively

adjusted by subtracting (esat&es)/eNsat until little or no change to t is detected.

It turns out that depending on the choice of interval, a fixed number of iterations will guarantee

the exact value of t without having to check the closeness of the solution at each iteration. For a

1°C interval and the &100° to +100°C domain, 4 iterations are enough. For 9°C interval and the

10

same domain, 3 iterations are enough. Closeness is checked at the end of all iterations to be

assured of convergence. If the exact result is not desired and computational time saving is

important, the iteration loop can be unrolled and the check can be done after the second-to-last

iteration.

Several other assumptions are made to obtain the inverse function. First, performance

depends on how close the first guess index is to the bracketing index. Typically the last value

calculated serves as a good first guess. Second, during iteration intermediate values of t may fall

outside the interval. It is assumed that the original interval table values can still be used to obtain

a solution. This causes no problem with the intervals tested and the number of iterations used.

Even a value of t only one bit away from the interval node value, the most difficult to solve, poses

no problem. The need for an extra iteration for the 1°C interval is an indication that this

assumption can begin to have problems. Use of a larger interval may require more iterations to

obtain a solution or may even fail to converge. Third, the choice of the initial index increment

during the hunt phase depends on the interval choice and the distribution of the solution

temperatures. If the value of the initial index increment is too small, extra time will be spent on

the hunt phase; if too large, more time will be spent in the search phase. For horizontal pressure

level data and an interval of 1°C, an index increment of 1 seems to give the best performance. For

the same data at 9°C interval a better choice seems to be 2 or 4 since adjacent locations are rarely

less than 9°C apart. Similar or larger values may also be better for vertically indexed data.

Finally, it has been assumed that an analytical solution to the cubic equation instead of a Newton-

Raphson solution would require more time. Since a cube root is involved, the standard Fortran

method of using logarithms and exponentials as well as computing the remaining parts of the

11

calculation would make it less efficient. On some machines, a built-in cube root is available and

the four-iteration solution for a 1°C interval may prove more expensive in that case. Since the

analytical method using a built-in cube root is neither portable nor gives an exact solution, this has

not been tested. The computer time to perform each stage is significant so that tradeoffs to

improve performance are difficult. The four-iteration 1°C interval solution takes a little less total

time (~10%) on some machines due to the reduced time in the hunt/search stage than the three-

iteration 9°C interval solution.

In the COLA AGCM, the inverse function is not required presently, so less emphasis has

been given to improving its performance than might be desired. The inverse function is used in

the post-processing and having an exact solution here is deemed more important.

3. Error analysis

Most approximations of es tend to cross or meet the original function a small number of

times over the domain. This makes it possible to describe the errors by indicating mean values,

root mean square values, extreme values or other statistics over fixed intervals or by using a table.

Alternatively, the errors can be presented graphically over the domain. In using a spline

approximation which has many matches to the original function throughout the domain, these

methods of indicating error behavior are less satisfactory and can be incomplete. What follows is

both a description of the errors over the domain and a graphical representation of the error

distribution.

When using 64-bit precision arithmetic, the errors are zero at each interval node and

12

usually negative within the interval: the spline approximation is less than the original function.

Regardless of the size of the interval, the errors tend to have a parabolic shape with maximum

absolute value near the interval midpoint. The relative error magnitudes are largest at the lowest

temperature, with values over ice somewhat larger than the values over water.

Because the relative errors here are quite small (<<1), it becomes convenient to represent

the errors in a compact yet precise way: quantitative errors or Qerr. For discussion purposes Qerr

can be defined as:

 (7)Q
)

spacing()err =
−(a c

c

where a = approximate value
c = correct value
spacing is the Fortran 90 spacing function: the absolute spacing of the number nearest the
argument according to machine representation.

Note: a similar definition can also be made for quantitative difference, Qdiff, where neither value is
assumed to be more correct than the other.

Conceptually, while Qerr will have only integer values, there is no guarantee that the division will

result in an exact integer value. Actual computation requires non-Fortran methods such as

unnormalized arithmetic or stripping (zeroing) the exponents (if they are the same) and computing

the integer difference. The concept of Qerr comes from the fact that computers are limited in their

ability to represent real or floating point data and that differences between two similar values can

only be represented as integral multiples of the smallest possible difference that can be

represented for either value (the error quantum). When Qerr=±1, the error is the smallest that can

13

be detected for a given precision. When errors are small multiples of this, it is a much more

compact way to express the error.

There is a relationship between the standard relative error, RES=(a&c)/c with a and c as

defined in (7), and the relative error computed from Qerr, REQ:

REQ = Qerr/Machine Mantissa Precision
The machine mantissa precision is a fixed function of the machine arithmetic precision.
For most 32-bit representations, the machine mantissa precision is 224 or 16,777,216. For
IEEE 64-bit arithmetic, the machine mantissa precision is 253 or 9,007,199,254,740,992.

As the values of a or c approach a power of two from below, REQ=RES. When the power of two

value is just exceeded, REQ=½RES. Thus, over each power of two of the function result, REQ

increases from ½RES to RES. This causes REQ (and Qerr as well) to behave unsteadily as the

domain value increases. This makes Qerr less useful as its value increases and the functional

behavior has a steadily larger scale error fluctuation over the domain. However, when errors are

small and the behavior even over small intervals is nearly random or highly varied, Qerr can

provide a better description of error behavior over the entire domain. While Qerr (or REQ)

behaves less steadily than RES, it more accurately describes the actual error behavior on a given

computer in terms of the realizable departure from its correct value.

The results presented here will focus on two interval choices: 1°C or 9°C. Other choices

are possible, but are not detailed since they are slower (Ö1°C), not precise enough (>1°C), not

distinct enough from the others (between 1°C and 9°C) or seem to provide little added benefit

(<9°C). For the 64-bit spline fit at a 1°C interval, the 32-bit Qerr will be shown. For the 64-bit

spline fit at 9°C interval, the 64-bit Qerr will be described since all errors are within 32-bit

precision but vary too much to be displayed graphically.

14

With Qerr only having integer values, it becomes convenient to use each value as a bin for

expressing error distribution when the errors are small enough. We start first with the errors of

32-bit vs. 64-bit representations of (1) and (2). This will serve as a guide for evaluating spline fit

error distributions.

Fig. 1 shows the distribution of Qerr at 1°C interval for 32-bit vs. 64-bit representations of

(1) over the entire domain of &100° to +100°C. Each interval is the error for each temperature in

the interval at 1/32768°C increments. For temperatures above 256K, all possible values of t are

evaluated in IEEE 32-bit arithmetic. Below 256K every other value of temperature is evaluated.

While potentially missing some values, the sample should still give a good estimate of the error

behavior. Retaining the same increment presents a more uniform graphical display. It can be seen

that the multiple terms in the exponential function of (1) give a fairly wide distribution of the Qerr.

Above &70°C the distribution range remains the same and only the increasing separation of the

succeeding power of two result values changes the shape of each power of two error distribution

pattern. This is what one would expect from a nearly random error distribution, though perhaps

larger than expected. The slight negative bias of the mean value of the distribution (~&7)

probably comes from the inability of the 32-bit function to come closer to the mean due to the

high amplification of differences: a Qdiff=1 in temperature gives Qdiff.30 in es throughout most of

the domain. Below &70°C, the errors become larger, nearly doubling at around &100°C. This

error increase toward colder temperatures will be seen in the other figures as well and may be due

to a reduction of significance or other numerically related problem.

Fig. 2 shows the distribution of Qerr at 1°C interval for 32-bit vs. 64-bit representations of

(2) over its domain of &100° to 0°C. The errors are smaller and fairly uniform down to about

15

&85°C. The bias seems to be slightly positive (~+3). The smaller errors and bias magnitude may

all be due to fewer terms in the exponential for (2): 6 instead of 8.

The corresponding distributions for the 64-bit 1°C interval cubic spline fits to (1) and (2)

using the same temperatures can be seem in Figs. 3 and 4. Fig. 3 shows that the errors over water

are quite small over much of the domain with 32-bit Qerr either &1 or 0 for temperatures above

&20°C and gradually reaching &37 at &100°C, and Qerr of +1 only seen below &50°C. In Fig. 4,

larger errors are reached at warmer temperatures, but since the values over ice are smaller than

over water, the tendency for errors to increase with smaller function values is also enhanced.

Positive Qerr still never exceed +1. While both fits show a negative bias, they are usually much

smaller than the errors in their 32-bit full function counterparts. It should be noted that since the

splines are computed in 64-bit arithmetic, the distributions shown in Figs. 3 and 4 only represent a

sample of all possible error values. Within each interval, however, the spline fits are well

behaved enough that the sampling of errors here should provide a good estimate of the actual total

error distribution.

For comparison the best approximating function of es over water reviewed by Buck

(1981), ew4, has much larger values of Qerr making it difficult to display them graphically.

Comparing figure 1 from Buck (1981) and limiting the domain from &25° to +35°C, the extreme

values of Qerr are ~+1500 at &15°C and ~&2500 at +15°C. Values outside this domain can be

several times larger. An additional advantage of the 64-bit 1°C interval cubic spline fits is the

diminishing error with increasing temperature, giving a better estimate of the total atmospheric

moisture content. Even the best approximating functions reviewed by Buck (1981) have errors

several orders of magnitude larger in this regard.

16

While the errors from the 64-bit 1°C interval cubic spline fits are below the observational

errors of tens of parts per million (ppm) for (1) and from 16 ppm at 0°C to 3560 ppm at &80°C for

(2), microphysical calculations may require even greater accuracy in the approximation functions

to better represent local behavior about the original physically based function. For this case the

choice of 9°C interval may prove more satisfactory. The 64-bit Qerr are too large to display

graphically but have a similar pattern to the 1°C interval cubic spline 32-bit Qerr. The largest

values within each interval range from ~&341000 at &99.65°C to ~&2527 near 0°C to ~&320 near

+60°C over water and from ~&396000 at &98.40°C to ~&5204 near 0°C over ice. No positive

values have been found so far. With a small loss of performance (<10% on most machines), a

large gain in accuracy can be obtained: about 4-6 orders of magnitude. For consistency, the most

accurate enhancement factors given in Buck (1981) Eq. (6) and Table 3 should also be used. This

will be discussed more below.

4. Sample Computational Times

The main purpose of this implementation is to retain high accuracy over a wide domain

while sustaining competitive computational performance. A small sample of calculation times on

a few platforms using some of the existing COLA AGCM algorithms as well as the new cubic

spline fit is shown in Table I. While unable to outperform the polynomial fit, the cubic spline fit

outperforms the exponential-based formula and linear look-up table method on the sample

platforms. Note that the linear look-up method as implemented gives the poorest performance on

the tested platforms suggesting a new formula would be better suited on these platforms. Each

17

algorithm was given identical optimization for a given platform and compiler. The shift in the

relative performance between the cubic spline fit and the polynomial fit on the different

computing environments suggests a dependency on optimization used. Even though many

optimization options are available, it has been difficult to improve the relative performance

beyond what is shown in table. The ability of the cubic spline fit to outperform the non-

polynomial fit algorithms will have to prove satisfactory for now since it exceeds all the

algorithms in accuracy and domain coverage.

5. Corrections to the Saturation Vapor Pressure and Calculation of Saturation Specific

Humidity

As mentioned in Buck (1981) accurate measurements show that vapor pressure behaves as

a non-ideal gas, often expressed as higher order virial coefficients in the equation of state. These

are discussed in detail in Hyland (1975). Buck (1981) used the tabular data given in Hyland

(1975) to create different correction formulas depending on the degree on accuracy desired. The

formulas give an enhancement factor that modifies the saturation vapor pressure value. While

these enhancement factors have both pressure and temperature dependencies, he suggested that

only detailed microphysical calculations need to consider both sets of dependencies and that most

applications can use the pressure dependent corrections only. In this way the pressure dependent

enhancement factor can be applied after calculating the temperature-only dependent esat. This also

makes it easier to compute the inverse function. The new COLA AGCM uses the most accurate

pressure-only dependent formulas (fw3 and fi3) for enhancement factor given by Buck (1981):

18

fw = 1.0007+3.47×10-8 P (8)
fi = 1.0003+4.18×10-8 P (9)

Where fw is the enhancement factor over water
fi is the enhancement factor over ice
P is the pressure in Pascals

The constant terms in each factor will lead to some error at lower pressures, but these should add

little to total error in atmospheric moisture since values tend to be quite small at low pressure.

The formulas of Wexler (1976 and 1977) are based on pure water. While natural water

contains many combinations of isotopic hydrogen and oxygen, their relative concentrations and

individual evaporation/condensation rates are temperature dependent and require very detailed

microphysics. While their effects are small, they can be of importance in paleoclimate studies.

See Bradley (1999) for a detailed discussion. These small effects fall outside the COLA AGCM

level of detail.

The reduction of vapor pressure over sea water is not quite as small and can have an

important affect on climate simulations through reduced surface evaporation as shown in Sud and

Walker (1997). Their formula (Witting, 1908) is based in part on an empirical fit of chlorinity

(that includes bromine and iodine as well as chlorine) to salinity over typical sea surface salinity

values of ~32-37‰. As water becomes fresher, the relationship breaks down giving a non-zero

correction at 0 ‰. In Sverdrup, et al. (1942) a simpler relationship also based on Witting (1908)

is given between vapor pressure reduction and salinity (also found in List, 1949):

esw = edw (1!0.000537 S) (10)

Where: esw is the vapor pressure over sea water
 edw is the vapor pressure over distilled water
S is the sea surface salinity (‰)

Using the Levitus (1982) data, sea surface salinity can interpolated daily or more frequently and

19

the reductions in saturation vapor pressure computed. Eq. (10) will hold even when the water

becomes entirely fresh.

The final saturation vapor pressure e$ is determined by using the appropriate value of esat

(over water or ice) multiplied by the corresponding enhancement factor (fw or fi) and the sea

surface salinity reduction factor, if applicable, over water. Specifically in the free atmosphere,

over ice covered surfaces, or away from water covered surfaces:

e$ = esat(over water) · fw (11)
or

e$ = esat(over ice) · fi (12)
If over water covered surfaces and fS = (1!0.000537 S):

e$ = esat(over water) · fw · fS (13)

With e$ the saturation specific humidity, qs, can now be computed. A key factor in this

calculation is ε = mw / md with mw = molecular weight of water vapor and md = molecular weight

of dry air. While the molecular weight of natural water vapor does depend on its isotopic

components, as mentioned above, this dependency is too complex to treat in the COLA AGCM.

The National Center for Atmospheric Research Community Atmosphere Model Version 2.0

(NCAR CAM2.0) constant value of 18.016 is used. The molecular weight of dry air can be

treated as a constant unless significant global change scenarios (e.g. 4×CO2) are being

investigated, which currently fall outside the COLA AGCM area of investigation. Here the

NCAR CAM2.0 constant value of 28.966 is used. Saturation specific humidity is then computed

in the usual fashion:

(14)q
e

p (1) es =
⋅

− − ⋅
ε

ε
$

$

20

Where e$ is as defined in 11, 12 or 13
p is the atmospheric pressure in Pascals

6. Conclusions

An accurate, large domain coverage, computationally efficient method of calculating

saturation vapor pressure and specific humidity has been presented. Based on more recent

formulas and including non-ideal gas and sea surface salinity corrections, this method should be

satisfactory for most modeling and data analysis applications. With some small changes, even

detailed microphysical calculations can be accommodated and reasonable computational

efficiency retained. The inverse function and the temperature derivative of es can also be

computed. The exact level of accuracy and detail can be kept entirely under control of the user.

21

REFERENCES

Software

Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, 1992: Numerical recipes in
FORTRAN: the art of scientific computing, 2nd ed. Cambridge University Press, 994 pp.

Publications

Bradley, R. S., 1999: Paleoclimatology, 2nd ed. Academic Press, 610 pp.

Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl.
Meteor., 20, 1527-1532.

Goff, J. A. and S. Gratch, 1946: Low-pressure properties of water from -160° to 212°F. Trans.
Amer. Soc. Heat. Vent. Eng., 52, 95-121.

Hyland, R. W., 1975: A correlation for the second interaction virial coefficients and enhancement
factors for moist air. J. Res. Natl. Bur. Stand., 79A, 551-560.

Kuo, H. L., 1965: On the formulation and intensification of tropical cyclones through latent heat
release by cumulus convection. J. Atmos. Sci., 22, 40-63.

Levitus, S., 1982: Climatological Atlas of World Ocean, National Oceanic and Atmospheric
Administration, 173 pp.

List, R. J., 1949: Smithsonian Meteorological Tables, 6th ed. Smithsonian Institution Press, 350
pp.

Moorthi, S. and M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist
convection for general circulation models. Mon. Wea. Rev., 120, 978-1002.

Sud, Y. C. and G. K. Walker, 1997: Simulation errors associated with the neglect of oceanic
salinity in an atmospheric GCM. Earth Interactions, 1, Paper No. 4, 1-19.

Sverdrup, H. U., M. W. Johnson and R. H. Fleming, 1942: The Oceans, their Physics, Chemistry
and General Biology, Prentice-Hall, 1087 pp.

Wexler, A., 1976: Vapor pressure formulation for water in the range 0° to 100°C—A Revision.
J. Res. Natl. Bur. Stand., 80A, p. 775 ff.

———, 1977: Vapor pressure formulation for ice. J. Res. Natl. Bur. Stand., 81A, 5-20.

22

Witting, R., 1908: Untersuchungen zur Kenntnis der Wasserbewegungen und der
Wasserumsetzung in den Finnland umgebenden Meeren. Finländische Hydrogr.-
Biologische Untersuchungen, no. 2, 246 pp. Cf. p. 173.

23

TABLE I.
Time (in Fsec) to compute the saturation vapor pressure, es, for all atmospheric temperatures
(144×73×17) in the NCEP/NCAR Reanalysis for 00Z 1 January 1990 for 4 different approximate
formulas (3 old formulas plus cubic spline replacement) in the COLA/AGCM on 4 different
computing platforms in 64-bit arithmetic.

Polynomial Exponential Linear look-up Cubic spline

SGI Origin 2000 12211 26199 74657 20502

Pentium P4 13357 30830 50751 23654

Itanium 7961 24556 54605 21730

Compaq DS 20 6832 21472 42944 19520

