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Colpitts Oscillator

● Basic positive feedback oscillator
● The Colpitts LC Oscillator circuit
● Open-loop analysis
● Closed-loop analysis
● Root locus
● Stability limit 
● Colpitts design
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Basic Positive Feedback Oscillator

V f

V i
=

V o

V i
=As= K N s

D s

A(s)
+

Vi = 0 Vo
Vf

closed-loop oscillator open-loop: determine loop-gain

A(s)+Vi Vo

Vf

+

V o=A sV iV f =As0V o⇒

V o1−As=0

Since: V o≠0⇒1−A s=0⇒ As=1⇒

Condition for oscillation at s = jω0: As=1 e j ±2k

D  s−K N s=0

Barkhausen criterion
for k = 0, 1, 2 ..

pos. fdbk
G s= As 

1−A s 
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Colpitts Oscillator Basic Schematic

Emphasizing feedback

Emphasizing loop gain

Assumptions:
1. rπ large (compared to 1/ωC2).
2. Cµ negligible (compared to C1, C2)
3. Cπ part of C2 (in closed loop)
4. R represents total resistance
    in collector circuit, i.e.

C
r

C

V  ro

E

gmV 

E

CB

F As

R∥ro≈R
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Loop-Gain Analysis

Node equation at vcg:

g m−sCV 
V cg

R
sC1CV cg

V cg−V f 
sL

=0

at vf:
V f −V cg 

sL
sC 2V f =0

As=
V f

V 
loop-gain:

Vf

Note that 
Vf = Vf (s)
Vcg = Vcg(s)
Vπ = Vπ(s) 

Cµ

C≪C1
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Open Loop Analysis - cont.

Rearranging the two equations:

− 1
sL

V cgsC 2
1
sL V f =0

Further rearrangement:

 s2 LC11
sL


1
R V cg−

1
sL

V f =sC−g mV 

− 1
sL

V cg s2 L C21
sL V f =0

sC1
1
sL

 1
R V cg−

1
sL

V f =sC−g mV 

from previous slide
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Open Loop Analysis - cont.

Prepare to add the two equations:

1
sL  s2 L C11

sL

1
R V cg− 1sL 

2

V f=
sC−g m

sL
V 

−
1
sL  s2 L C11

sL

1
R V cg s2 L C11

sL

1
R  s2 LC21

sL V f =0

Adding (V
cg
 terms cancel):

− 1sL 
2

 s2 L C11
sL

 1
R  s2 L C21

sL V f =
sC −gm

sL
V 

 s2 LC11
sL  1R V cg−

1
sL V f =sC−gmV 

− 1
sL V cg s2 LC 21

sL V f=0

(1)

(2)

Eq 1∗ 1
sL

Eq 2∗ s2 LC11
sL  1R 

from previous slidefrom previous slide
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Open Loop Analysis – cont. 

− 1sL 
2

 s2 L C11
sL


1
R  s2 LC21

sL V f =
C−g m

sL
V 

Multiply by (sL)2:

−1s2 LC11
sL
R  s2 LC 21 V f = sC−gm sLV 

Expand and collect terms according to sn:

−1s4C1C 2 L2s2  LC1LC 2 s3
L2C2

R
s L

R
1V f=sC−g m sLV

From previous slide
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Open Loop Analysis - cont.

−1s4C1C 2 L2s2  LC1LC 2 
s3 L2C2

R


s L
R
1V f =sC−gm sLV 

Canceling (-1 by 1) and dividing by sL:

s3C1C2 Ls C1C 2 
s2 LC2

R

1
R V f =sC−g mV 

Multiply by R:

 s3RC1C2 Ls R C1C2 s2 LC 21 V f = sC−g mRV 

From previous slide
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Open Loop Analysis - cont.

 s3RC1C2 Ls R C1C2 s2 LC 21 V f = sC−g mRV 

Normalize (divide by RC1C2L) and factor out C
µ
:

s3s
C1C 2 
C1C 2 L

s2 1
RC1

 1
R C1C 2 L V f =

s−
g m

C
R C

RC1C 2 L
V 

The loop-gain transfer function:

V f

V 

=As=

RC

R C1C 2 L
s−

gm

C 



s3s2 1
RC1

s
C1C2 
C1C 2 L


1

R C1C 2 L

= K N s
D  s

From previous slide
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Closed Loop Analysis - cont.
The closed loop equation (note the positive feedback):

T s= As
1−As

= K N  s
D s−K N s

As= K N s
D s

where:
K=

RC

RC1C 2 L N s=s−
g m

C

≈−
g m

C

D s=s3s2 1
RC1

s
C1C 2 
C1C2 L

 1
RC1C2 L

D s−K N s=D  s−
−gm R

RC1C2 L
=s3s2 1

R C1
s

C1C 2 
C1C 2 L


1gm R
RC1C2 L

then:
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Closed Loop Analysis - cont.

D s=s3s2 1
R C1

s
C1C 2 
C1C2 L 

1
RC1C 2 L

We know that the open loop system A(s) is stable. It has poles
in the left-half s-plane, since it is a passive RLC circuit. We
also know that it has 3 stable poles. One is negative-real, the 
other 2 can be negative-real or LHP complex conjugates.

So, let's do a rough sketch of the root locus for a feedback system
with a 3 stable pole A(s).
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Root Locus Characteristic

Open loop
poles somewhere
in here

Closed loop
pole locus

The loop will become
unstable for any value
of              .
Rather than sketch the
root locus in more exacting
detail – it has served its 
purpose by verifying that
oscillation is possible. 
Let's solve for the required
       .

j



X

X jx

− jx

KK 0
K=K 0

K=K 0

K 0
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Stability Limit Calculation 
If the closed-loop system is at the stability limit point:

D s=sas2x
2

Multiplying terms:
D s=s3a s2x

2 sax
2⇒D  j=ax

2−a2= j x−3
Match term by term with:

D sK N s=s3s2 1
RC 1

s
C1C 2 
C1C 2 L 

1gm R
RC1C2 L

a= 1
RC1

x
2=

1

 C1C2

C1C2 L
ax

2=
1gm R
RC1C 2 L

a
x
2

a x
2

= 0 = 0
to oscillate
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Stability Limit

a= 1
RC1

x
2= 1

 C1C2

C1C2 L
=

C1C 2

C1C 2 L ax
2=
1gm R
RC1C 2 L

1
R C1

C1C2

C1C2 L
=

C1C 2

RC1
2C2 L

=
1gm R
RC1C 2 L

⇒1gm R=
C1C 2

C1

To find the “gain” requirement for oscillation, equate:

gm R=
C1C 2−C1

C1
=

C 2

C1

a x
2 ax

2
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Oscillator Design Summary
The oscillation frequency:

The required feedback gain C
2
/C

1
: gm R=

C 2

C1

Comments:
1. Unfortunately we don't control “R”.
2. We can fix g

m
 and adjust C

2
/C

1
 and adjust “L” to keep ωx constant.

2.We can adjust g
m
 through the bias current I

C
 and set C

2
 and C

1
 

            at convenient values, say C
2
 = C

1
 = C.  We can know choose L.

x=C1C 2

C1C2 L

To insure the start-up of oscillation: gm R
C 2

C1
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Practical Colpitts Oscillator Circuit
VCC

large

largeRE

RB1

RB2

L

C1
C2

RFC

RFC = RF choke ->
large reactance at ω0

low resistance at dc


