Lecture 5: Cost, Price, and Price for Performance

Professor Randy H. Katz
Computer Science 252
Spring 1996

Review From Last Time

- Given sales a function of performance relative to competition, tremendous investment in improving product as reported by performance summary
- Good products created when have:
- Good benchmarks
- Good ways to summarize performance
- If benchmarks/summary inadequate, then choice between improving product for real programs vs. improving product to get more sales; sales almost always wins!
- Execution time is the REAL measure of computer performance!
- What about cost?

Impact of Means on SPECmark89 for IBM 550

Ratio to VAX: Time: Weighted Time:

Program	Before	After	Before	After	Before	After
gcc	30	29	49	51	8.91	9.22
espresso	35	34	65	67	7.64	7.86
spice	47	47	510	510	5.69	5.69
doduc	46	49	41	38	5.81	5.45
nasa7	78	144	258	140	3.43	1.86
li	34	34	183	183	7.86	7.86
eqntott	40	40	28	28	6.68	6.68
matrix300	78	730	58	6	3.43	0.37
fpppp	90	87	34	35	2.97	3.07
tomcatv	33	138	20	19	2.01	1.94
Mean	54	72	124	108	54.42	49.99
	Geometric	Arithmetic	WeightedArith.			
	Ratio	1.33	Ratio	1.16	Ratio	1.09

Integrated Circuits Costs

$I C$ cost $=\underline{\text { Die cost }+ \text { Testing cost }+ \text { Packaging cost }}$
 Final test yield

Integrated Circuits Costs

$I C$ cost $=\frac{\text { Die cost }+ \text { Testing cost }+ \text { Packaging cost }}{\text { Final test yield }}$
Die cost =

Wafer cost
Dies per Wafer * Die yield

Integrated Circuits Costs

$I C$ cost $=\underline{\text { Die cost }+ \text { Testing cost }+ \text { Packaging cost }}$
Final test yield
Die cost $=\frac{\text { Wafer cost }}{\text { Dies per Wafer * Die yield }}$
Dies per wafer $=\frac{\pi^{*}(\text { Wafer_diam } / 2)^{2}}{\text { Die Area }}-\frac{\pi^{*} \text { Wafer_diam }}{\sqrt{2^{*} \text { Die Area }}}$

- Test dies

Integrated Circuits Costs

$I C$ cost $=\frac{\text { Die cost }+ \text { Testing cost }+ \text { Packaging cost }}{\text { Final test yield }}$
Die cost $=\frac{\text { Wafer cost }}{\text { Dies per Wafer * Die yield }}$
Dies per wafer $=\frac{\pi^{*}(\text { Wafer_diam } / 2)^{2}}{\text { Die Area }}-\frac{\pi^{*} \text { Wafer_diam }}{\sqrt{2^{*} \text { Die Area }}}-$ Test dies

Die Yield = Wafer yield *

Integrated Circuits Costs

Dies per wafer $=\frac{\pi^{*}(\text { Wafer_diam } / 2)^{2}}{\text { Die Area }}-\frac{\pi^{*} \text { Wafer_diam }}{\sqrt{2^{*} \text { Die Area }}}-$ Test dies

Die Yield $=$ Wafer yield * $\left\{1+\frac{\text { Defects_per_unit_area * Die_Area }}{\alpha}\right\}^{-\alpha}$
Die Cost goes roughly with die area ${ }^{4}$

Real World Examples

Chip $\begin{gathered}\text { Met } \\ \text { lay }\end{gathered}$		Line width	Wafer cost	Defect $/ \mathrm{cm}^{2}$	Area mm^{2}	Dies/ wafer	Yield Die Cost	
386DX	2	0.90	\$900	1.0	43	360	71\%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54\%	\$12
PowerPC 601	4	0.80	\$1700	1.3	121	115	28\%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27\%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19\%	\$149
SuperSPARC	3	0.70	\$1700	1.6	256	48	13\%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9\%	\$417

- From "Estimating IC Manufacturing Costs," by Linley Gwennap, Microprocessor Report, August 2, 1993, p. 15

Other Costs

Die Test Cost $=$ Test Jig Cost * Ave. Test Time Die Yield

Packaging Cost: depends on pins, heat dissipation, beauty, ...

Chip	Die cost				Package			pins	type	cost	Test \&	Tssembly	Total
386DX	$\$ 4$	132	QFP	$\$ 1$	$\$ 4$	$\$ 9$							
486DX2	$\$ 12$	168	PGA	$\$ 11$	$\$ 12$	$\$ 35$							
PowerPC 601	$\$ 53$	304	QFP	$\$ 3$	$\$ 21$	$\$ 77$							
HP PA 7100	$\$ 73$	504	PGA	$\$ 35$	$\$ 16$	$\$ 124$							
DEC Alpha	$\$ 149$	431	PGA	$\$ 30$	$\$ 23$	$\$ 202$							
SuperSPARC	$\$ 272$	293	PGA	$\$ 20$	$\$ 34$	$\$ 326$							
Pentium	$\$ 417$	273	PGA	$\$ 19$	$\$ 37$	$\$ 473$							

Cost/Performance

What is Relationship of Cost to Price?

- Component Costs

Cost/Performance

What is Relationship of Cost to Price?

- Component Costs
- Direct Costs (add 25% to $\mathbf{4 0 \%}$) recurring costs: labor, purchasing, scrap, warranty

Cost/Performance

What is Relationship of Cost to Price?

- Component Costs
- Direct Costs (add 25% to $\mathbf{4 0 \%}$) recurring costs: labor, purchasing, scrap, warranty
- Gross Margin (add 82\% to 186\%) nonrecurring costs: R\&D, marketing, sales, equipment maintenance, rental, financing cost, pretax profits, taxes

Cost/Performance
 What is Relationship of Cost to Price?

- Component Costs
- Direct Costs (add 25% to $\mathbf{4 0 \%}$) recurring costs: labor, purchasing, scrap, warranty
- Gross Margin (add 82% to 186%) nonrecurring costs: R\&D, marketing, sales, equipment maintenance, rental, financing cost, pretax profits, taxes
- Average Discount to get List Price (add 33% to 66%): volume discounts and/or retailer markup

Chip Prices (August 1993)

- Assume purchase 10,000 units

Chip	Area mm^{2}	Mfg. cost	Price	Multi- plier	Comment
386DX	43	$\$ 9$	$\$ 31$	3.4	Intense Competition
486DX2	81	$\$ 35$	$\$ 245$	7.0	No Competition
PowerPC 601	121	$\$ 77$	$\$ 280$	3.6	
DEC Alpha	234	$\$ 202$	$\$ 1231$	6.1	Recoup R\&D?
Pentium	296	$\$ 473$	$\$ 965$	2.0	Early in shipments

Workstation Costs: \$1000 to \$3000

- DRAM:
- Color Monitor:
- CPU board:
- Hard disk:
- CPU cabinet:
- Video \& other I/O:
- Keyboard, mouse:

50\% to 55\%
15\% to 20\%
10\% to 15\%
8\% to 10\%
3\% to 5\%
3\% to 7\%
1\% to 2\%

Learning Curve

Volume vs. Cost

- Rule of thumb on applying learning curve to manufacturing:
"When volume doubles, costs reduce 10\%"
A DEC View of Computer Engineering by C. G. Bell, J. C. Mudge, and J. E. McNamara, Digital Press, Bedford, MA., 1978.
- 40 MPPs @ 200 nodes = 8,000 nodes/year vs. 100,000 Workstations/year

$$
12.5 X \approx 2^{3.6}=>(0.9)^{3.6}=0.68
$$

Cost should be $1 / 3$ less for same components

- What about PCs vs. WS?

Volume vs. Cost: PCs vs. Workstations

	1990	1992	1994	1997
PC	$23,880,898$	$33,547,589$	$44,006,000$	$65,480,000$
WS	407,624	584,544	679,320	978,585
Ratio	59	57	65	67

- $65 X \approx 2^{6.0}=>(0.9)^{6.0}=0.53$
$\approx 50 \%$ costs for whole market for PCs vs. Workstations

Single company: 20\% WS market vs. 10\% PC market
$\begin{array}{lllll}\text { Ratio } 29 & 29 & 32 & 33\end{array}$

- $32 X \approx 2^{5.0}=>(0.9)^{5.0}=0.59$
$\approx 60 \%$ costs for single company for PCs vs. Workstations

High Margins on High-End Machines

- R\&D considered return on investment (ROI) $\approx 10 \%$
- Every \$1 R\&D must generate $\$ 7$ to $\$ 13$ in sales
- High end machines need more \$ for R\&D
- Sell fewer high end machines
- Fewer to amortize R\&D
- Much higher margins
- Cost of 1 MB Memory (January 1994):

PC	$\$ 40$	(Mac Quadra)
WS	$\$ 42$	(SS-10)
Mainframe	$\$ 1920$	(IBM 3090)
Supercomputer	$\$ 600$	(M90 DRAM)
	$\$ 1375$	(C90 15 ns SRAM)

Recouping Development Cost on Low Volume Microprocessors?

- Hennessy says MIPS R4000 cost $\$ 30 \mathrm{M}$ to develop
- Intel rumored to invest $\$ 100 \mathrm{M}$ on 486
- SGI/MIPS sells 300,000 R4000s over product lifetime?
- Intel sells 50,000,000 486s?
- Intel must get \$100M from chips (\$2/chip)
- SGI/MIPS can get \$30M from margin of workstations vs. chips vs. $\$ 100 / c h i p$
- Alternative: SGI buys chips vs. develops them

Price/Performance Gross Margin vs. Market Segment

Price/Performance Gross Margin vs. Market Segment

Impact of Margin Shrink on Society/Computer Industry

- Economy?
- Research Labs?
- Future Products?
- Your jobs?

Information Technology R\&D

U.S. IT's Biggest R\&D Spenders in 1993: Total \$29.2 billion

\square IBM	\square AT\&T	\square HP	\square DEC
\square Motorola	\square Intel	\square Xerox	\square Apple
\square GM-H.E.	\square Texas Instr	\square Unisys	\square Microsoft
\square Sun	\square Tandem	\square Honeywell	\square 297 other companies

Accelerating Pace of Product Development

RHK.S96 26

Shift in Employment Towards Software and Services

RHK.S96 27

Long Term R\&D Investments Take Time to Payoff

US IT Trade Balance (It’s Negative!)

IT Industry Exports and Trade Balance (\$, Billions)

RHK.S96 29

