### Lecture 5: Cost, Price, and Price for Performance

Professor Randy H. Katz Computer Science 252 Spring 1996

#### **Review From Last Time**

- Given sales a function of performance relative to competition, tremendous investment in improving product as reported by performance summary
- Good products created when have:
  - Good benchmarks
  - Good ways to summarize performance
- If benchmarks/summary inadequate, then choice between improving product for real programs vs. improving product to get more sales; sales almost always wins!
- Execution time is the REAL measure of computer performance!
- What about cost?

### Impact of Means on SPECmark89 for IBM 550

Wainblad Time.

Datia to VAV.

| Ratio to VAX: |           |            | Time:   |       | Weighted Time:  |       |
|---------------|-----------|------------|---------|-------|-----------------|-------|
| Program       | Before    | After      | Before  | After | Before          | After |
| gcc           | 30        | 29         | 49      | 51    | 8.91            | 9.22  |
| espresso      | 35        | 34         | 65      | 67    | 7.64            | 7.86  |
| spice         | 47        | 47         | 510     | 510   | 5.69            | 5.69  |
| doduc         | 46        | 49         | 41      | 38    | 5.81            | 5.45  |
| nasa7         | <b>78</b> | 144        | 258     | 140   | 3.43            | 1.86  |
| li            | 34        | 34         | 183     | 183   | 7.86            | 7.86  |
| eqntott       | 40        | 40         | 28      | 28    | 6.68            | 6.68  |
| matrix300     | <b>78</b> | <b>730</b> | 58      | 6     | 3.43            | 0.37  |
| fpppp         | 90        | 87         | 34      | 35    | 2.97            | 3.07  |
| tomcatv       | 33        | 138        | 20      | 19    | 2.01            | 1.94  |
| Mean          | 54        | <b>72</b>  | 124     | 108   | 54.42           | 49.99 |
|               | Geometric |            | Arithme | tic   | Weighted Arith. |       |
|               | Ratio     | 1.33       | Ratio   | 1.16  | Ratio           | 1.09  |

```
IC cost = Die cost + Testing cost + Packaging cost
Final test yield
```

```
IC cost = Die cost + Testing cost + Packaging cost
Final test yield
```

Test dies







α

Die Cost goes roughly with die area4

### **Real World Examples**

|                  | Metal<br>layers | _    | Wafer<br>n cost | Defect<br>/cm² |     | Dies/<br>wafer | Yield | Die Cost    |
|------------------|-----------------|------|-----------------|----------------|-----|----------------|-------|-------------|
| 386DX            | 2               | 0.90 | \$900           | 1.0            | 43  | 360            | 71%   | <b>\$4</b>  |
| 486DX2           | 3               | 0.80 | \$1200          | 1.0            | 81  | 181            | 54%   | <b>\$12</b> |
| PowerPC 6        | 601 4           | 0.80 | \$1700          | 1.3            | 121 | 115            | 28%   | <b>\$53</b> |
| <b>HP PA 710</b> | 0 3             | 0.80 | \$1300          | 1.0            | 196 | 66             | 27%   | <b>\$73</b> |
| DEC Alpha        | 3               | 0.70 | \$1500          | 1.2            | 234 | 53             | 19%   | \$149       |
| SuperSPA         | RC 3            | 0.70 | \$1700          | 1.6            | 256 | 48             | 13%   | \$272       |
| <b>Pentium</b>   | 3               | 0.80 | \$1500          | 1.5            | 296 | 40             | 9%    | \$417       |

<sup>-</sup> From "Estimating IC Manufacturing Costs," by Linley Gwennap, *Microprocessor Report*, August 2, 1993, p. 15

#### **Other Costs**

Die Test Cost = Test Jig Cost \* Ave. Test Time

Die Yield

Packaging Cost: depends on pins, heat dissipation, beauty, ...

| Chip        | Die         | P    | Test & | Total       |             |             |
|-------------|-------------|------|--------|-------------|-------------|-------------|
|             | cost        | pins | type   | cost        | Assembly    |             |
| 386DX       | \$4         | 132  | QFP    | <b>\$1</b>  | \$4         | \$9         |
| 486DX2      | <b>\$12</b> | 168  | PGA    | <b>\$11</b> | \$12        | \$35        |
| PowerPC 601 | <b>\$53</b> | 304  | QFP    | <b>\$3</b>  | <b>\$21</b> | <b>\$77</b> |
| HP PA 7100  | <b>\$73</b> | 504  | PGA    | \$35        | <b>\$16</b> | \$124       |
| DEC Alpha   | \$149       | 431  | PGA    | \$30        | <b>\$23</b> | \$202       |
| SuperSPARC  | \$272       | 293  | PGA    | <b>\$20</b> | \$34        | \$326       |
| Pentium     | \$417       | 273  | PGA    | <b>\$19</b> | \$37        | \$473       |

What is Relationship of Cost to Price?

Component Costs



What is Relationship of Cost to Price?

- Component Costs
- Direct Costs (add 25% to 40%) recurring costs: labor, purchasing, scrap, warranty



#### What is Relationship of Cost to Price?

- Component Costs
- Direct Costs (add 25% to 40%) recurring costs: labor, purchasing, scrap, warranty
- Gross Margin (add 82% to 186%) nonrecurring costs:
   R&D, marketing, sales, equipment maintenance, rental, financing cost, pretax profits, taxes



#### What is Relationship of Cost to Price?

- Component Costs
- Direct Costs (add 25% to 40%) recurring costs: labor, purchasing, scrap, warranty
- Gross Margin (add 82% to 186%) nonrecurring costs:
   R&D, marketing, sales, equipment maintenance, rental, financing cost, pretax profits, taxes
- Average Discount to get List Price (add 33% to 66%): volume discounts and/or retailer markup



### **Chip Prices (August 1993)**

• Assume purchase 10,000 units

| Chip        | Area | Mfg.        | Price  | Multi- | Comment                    |
|-------------|------|-------------|--------|--------|----------------------------|
|             | mm²  | cost        |        | plier  |                            |
| 386DX       | 43   | <b>\$9</b>  | \$31   | 3.4    | <b>Intense Competition</b> |
| 486DX2      | 81   | \$35        | \$245  | 7.0    | No Competition             |
| PowerPC 601 | 121  | <b>\$77</b> | \$280  | 3.6    |                            |
| DEC Alpha   | 234  | \$202       | \$1231 | 6.1    | Recoup R&D?                |
| Pentium     | 296  | \$473       | \$965  | 2.0    | Early in shipments         |

#### Workstation Costs: \$1000 to \$3000

• DRAM: 50% to 55%

• Color Monitor: 15% to 20%

• CPU board: 10% to 15%

• Hard disk: 8% to 10%

• CPU cabinet: 3% to 5%

• Video & other I/O: 3% to 7%

Keyboard, mouse: 1% to 2%

### **Learning Curve**



#### Volume vs. Cost

 Rule of thumb on applying learning curve to manufacturing:

"When volume doubles, costs reduce 10%"

A DEC View of Computer Engineering by C. G. Bell, J. C. Mudge, and J. E. McNamara, Digital Press, Bedford, MA., 1978.

 40 MPPs @ 200 nodes = 8,000 nodes/year vs. 100,000 Workstations/year

12.5X 
$$2^{3.6} = > (0.9)^{3.6} = 0.68$$

Cost should be 1/3 less for same components

What about PCs vs. WS?

### Volume vs. Cost: PCs vs. Workstations

|       | 1990       | 1992       | 1994       | 1997       |
|-------|------------|------------|------------|------------|
| PC    | 23,880,898 | 33,547,589 | 44,006,000 | 65,480,000 |
| WS    | 407,624    | 584,544    | 679,320    | 978,585    |
| Ratio | 59         | 57         | 65         | 67         |

• 65X  $2^{6.0} = (0.9)^{6.0} = 0.53$ 

50% costs for whole market for PCs vs. Workstations

### Single company: 20% WS market vs. 10% PC market

Ratio

29

29

**32** 

33

• 32X 
$$2^{5.0} = (0.9)^{5.0} = 0.59$$

60% costs for single company for PCs vs. Workstations

### **High Margins on High-End Machines**

- R&D considered return on investment (ROI) 10%
  - Every \$1 R&D must generate \$7 to \$13 in sales
- High end machines need more \$ for R&D
- Sell fewer high end machines
  - Fewer to amortize R&D
  - Much higher margins
- Cost of 1 MB Memory (January 1994):

```
PC $40 (Mac Quadra)
WS $42 (SS-10)
Mainframe $1920 (IBM 3090)
Supercomputer $600 (M90 DRAM)
$1375 (C90 15 ns SRAM)
```

## Recouping Development Cost on Low Volume Microprocessors?

- Hennessy says MIPS R4000 cost \$30M to develop
- Intel rumored to invest \$100M on 486
- SGI/MIPS sells 300,000 R4000s over product lifetime?
- Intel sells 50,000,000 486s?
- Intel must get \$100M from chips (\$2/chip)
- SGI/MIPS can get \$30M from margin of workstations vs. chips vs. \$100/chip
- Alternative: SGI buys chips vs. develops them

# Price/Performance Gross Margin vs. Market Segment



# Price/Performance Gross Margin vs. Market Segment



# Impact of Margin Shrink on Society/Computer Industry

- Economy?
- Research Labs?
- Future Products?
- Your jobs?

### **Information Technology R&D**

U.S. IT's Biggest R&D Spenders in 1993: Total \$29.2 billion





## Accelerating Pace of Product Development



### **Shift in Employment Towards Software and Services**



# Long Term R&D Investments Take Time to Payoff



# US IT Trade Balance (It's Negative!)

IT Industry Exports and Trade Balance (\$, Billions)

