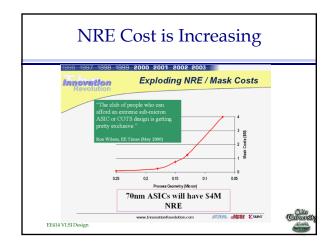
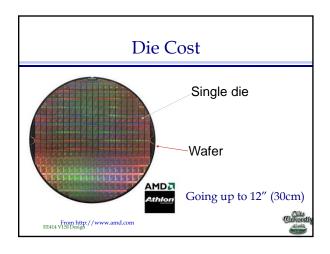


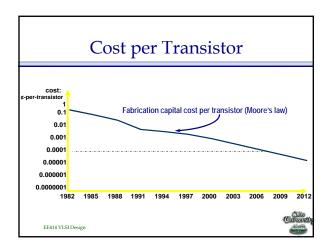
Design Metrics

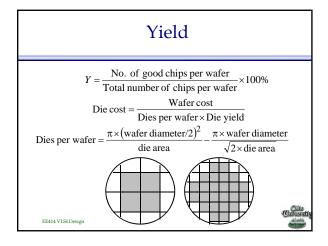
- How to evaluate performance of a digital circuit (gate, block, ...)?
 - » Cost
 - » Reliability
 - » Scalability
 - » Speed (delay, operating frequency)
 - » Power dissipation
 - » Energy to perform a function

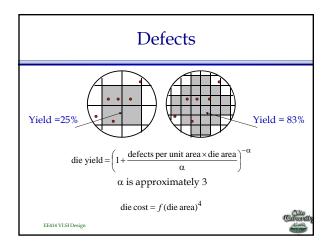
EE414 VLSI Design

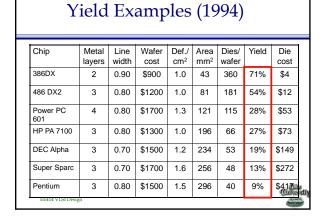


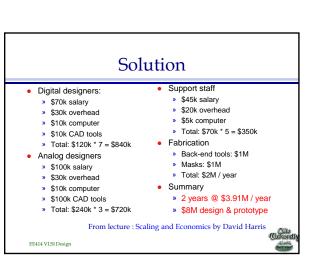

Design Metrics • 34 nm 32 GbFlash memory chip (Intel)

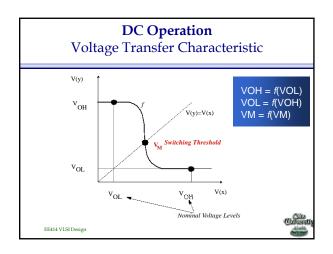

Cost of Integrated Circuits

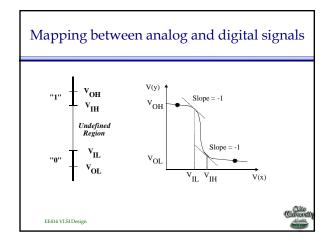

- NRE (non-recurrent engineering) costs
 - » design time and effort, mask generation
 - » one-time cost factor
- Recurrent costs
 - » silicon processing, packaging, test
 - » proportional to volume
 - » proportional to chip area

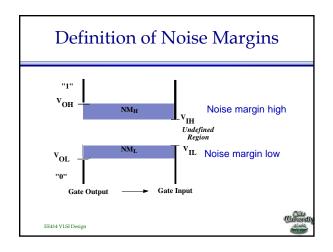








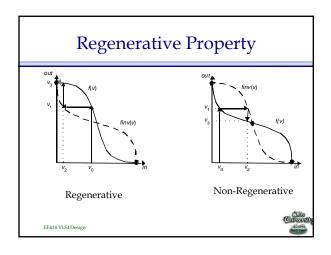


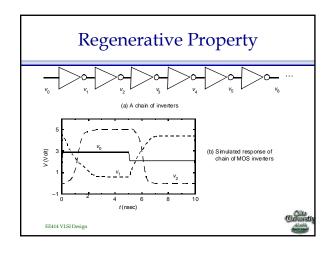

Example You want to start a company to build a wireless communications chip. How much venture capital must you raise? Because you are smarter than everyone else, you can get away with a small team in just two years: Seven digital designers Three analog designers Five support personnel From lecture: Scaling and Economics by David Harris

Reliability— Noise in Digital Integrated Circuits VDD VDD (a) Inductive coupling (b) Capacitive coupling (c) Power and ground noise

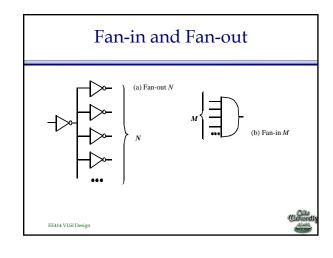
Noise Budget

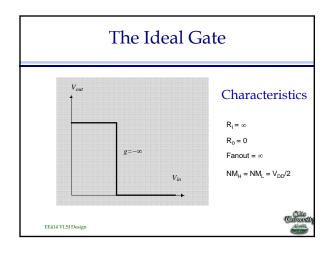
- Allocates gross noise margin to expected sources of noise
- Differentiate between fixed and proportional noise sources
- Sources: supply noise, cross talk, interference, offset
- Shielding: metal lines and guard rings used to lower signal interference

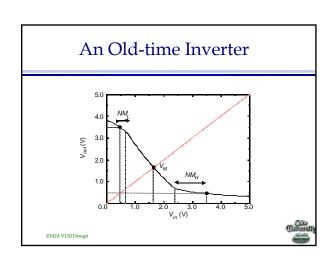

EE414 VLSI Design

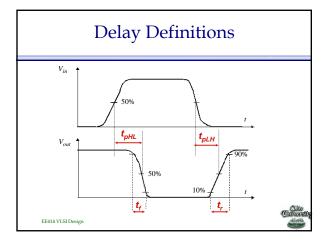


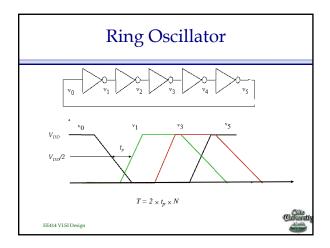
Key Reliability Properties

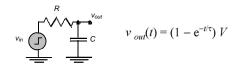

- Absolute noise margin values are deceptive
 - » a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)
- Noise immunity is the more important metric the capability to suppress noise sources
- Key metrics: Noise transfer functions, Output impedance of the driver and input impedance of the receiver;






Pan-in and Fan-out* **Number of load gates, N, that are connected to the output of the driving gate* **tends to lower the logic levels* **deteriorates dynamic performance* **gate must have low output resistance to drive load* **library cells have **maximum fan-out* specification **an-in:* **Number of inputs, M, to the gate* **large fan-in gates are more complex*




•results in inferior static and dynamic performance

A First-Order RC Network

 $t_p = ln (2) \tau = 0.69 RC$

Important model - matches delay of inverter

EE414 VLSI Design

Power Dissipation

Instantaneous power:

$$p(t) = v(t)i(t) = V_{supply}i(t)$$

Peak power:

$$P_{peak} = V_{supply} i_{peak}$$

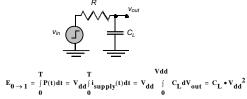
Average power:

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} p(t) dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i_{supply}(t) dt$$

EE414 VLSI Design

Energy and Energy-Delay

Power-Delay Product (PDP) =


E = Energy per operation = $P_{av} \times t_p$

Energy-Delay Product (EDP) =

quality metric of gate = $E \times t_p$

EE414 VLSI Design

A First-Order RC Network

 $\mathbf{E}_{cap} = \int\limits_{0}^{T} \mathbf{P}_{cap}(\mathbf{t}) d\mathbf{t} = \int\limits_{0}^{T} \mathbf{V}_{out} \mathbf{i}_{cap}(\mathbf{t}) d\mathbf{t} = \int\limits_{0}^{V} \mathbf{C}_L \mathbf{V}_{out} d\mathbf{V}_{out} = \frac{1}{2} \mathbf{C}_L \cdot \mathbf{V}_{dd}^2$

Summary

- Digital integrated circuits have come a long way and still have some potential left for the coming decades
- Some interesting challenges ahead
 - Getting a clear perspective on the challenges and potential solutions
 Understanding the design metrics that govern digital design is crucial

 - Optimize the design metrics cost, reliability, speed, power and energy dissipation

