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Lecture 2 Outline

• Comparison of Stability Criteria
• Design Specifications From Arbitrary 

Stability Criteria
• Generalized Impedance / Admittance 

Concepts
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Stability Factoid

The source load system is stable provided that the evaluation
of             along the Nyquist contour does not encircle -1lsYZ
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Stability Criteria
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[2] S.D. Sudhoff, “Admittance Space Based Stability Specification,” Proceedings of the 1998 ONR -
Drexel-NSWC Workshop on Electric Shipboard System Modeling, Simulation and Control, June 22-23, 
1998, Philadelphia, PA, USA
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Purpose of Stability Criteria

• Primary
– Basis for calculating load admittance spec from 

source impedance; or source impedance spec 
from load admittance

• Secondary
– Check of stability
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Comparison of Stability Criteria

• Cost of resulting design
• Amenability to arbitrary component 

grouping
• Amenability to formulation of design 

specification
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Cost of Resulting Design
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[2] S.D. Sudhoff, “Admittance Space Based Stability Specification,” Proceedings of the 1998 ONR -
Drexel-NSWC Workshop on Electric Shipboard System Modeling, Simulation and Control, June 22-23, 
1998, Philadelphia, PA, USA
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Cost of Resulting Design

• Middlebrook (Highest)
• Opposing Argument
• Gain/Phase 
• ESAC (Lowest)
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Grouping: Case Study 1
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Grouping: Case Study 1 -
Nyquist Plane Results
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Grouping: Case Study 2
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Grouping: Case Study 2  
Nyquist Plane Results
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Grouping: Summary

• ESAC Criteria much less sensitive to 
grouping than other proposed criteria
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Design Specification: Middlebrook

• Suppose       known
• Design specification on load becomes

• Alternately, could come up with 
specification on load impedance
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Design Specification: 
Gain and Phase Margin Criteria

• Design specification based on
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Design Specification: ESAC Criteria

Construction of a load admittance specification at a point
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Design Specification: ESAC Criteria

Construction of load admittance constraint at a frequency
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Design Specification: ESAC Criteria
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3-D stability constraint in admittance space
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Comments on Stability Criteria

• Design Cost (Highest to Lowest)
– Middlebrook, Opposing Argument, GMPM, 

ESAC
• Component Grouping

– ESAC criteria much less sensitive to grouping
• Translation to Design Specification

– Middlebrook most readily used
– GMPM not bad
– ESAC requires toolbox
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Dealing with Reality:
Example System
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Generalized Source Impedance

• Speed: 0.9-1.1 p.u.
• Power: 0-1.1 p.u.
• Voltage: 0.95-1.05 p.u.
• Number of Plants Considered: 125
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Generalized Source Impedance
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Generalized Load Admittance 
and Load Admittance Constraint
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Generalized Source Impedance 
and Source Impedance Constraint
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Measured Performance
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Mitigation: The Nonlinear Stabilizing 
Control Architecture (NSCA) 

[3] S.D. Sudhoff, K.A. Corzine, S.F. Glover, H.J. Hegner, and 
H.N. Robey, “DC Link Stabilized Field Oriented Control of 
Electric Propulsion Systems,” IEEE Transactions on Energy 
Conversion, Vol. 13, No. 1, March 1998.

[4] S.D. Sudhoff, “Control of Power Electronics Based Systems” 
Proceedings of the 1998 ONR -Drexel-NSWC Workshop on 
Electric Shipboard System Modeling, Simulation and Control, 
June 22-23, 1998, Philadelphia, PA, USA

[5] S.D. Sudhoff, S.F. Glover, “Nonlinear Stabilizing Control for 
Power Electronic Based Systems,” U.S. Patent No. 6,051,941, 
April 18, 2000.  International Patents Applied For.
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Generalized Load Admittance 
and Constraint with NSCA   
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Generalized Source Impedance 
and Constraint with NSCA
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Measured Performance with NSCA
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Conclusions

• ESAC Criteria 
– Leads to Less Expensive / Higher Performance Designs
– Facilitates Modularity in Design Process

• 3-Dimensional Admittance/Impedance Space 
Approach
– Allows ESAC (and Arbitrary) Stability to Be Used
– Facilitates Specification of Source Given Load
– Facilitates Specification of Load Given Source


