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Lecture 2

[Lecture 2 Outline

* Comparison of Stability Criteria

* Design Specifications From Arbitrary
Stability Criteria

* Generalized Impedance / Admittance
Concepts
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Stability Factoid

The source load system 1is stable provided that the evaluation
of ZY; along the Nyquist contour does not encircle -1
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Stability Criteria
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Purpose of Stability Criteria

* Primary

— Basis for calculating load admittance spec from
source impedance; or source impedance spec
from load admittance

* Secondary
— Check of stability
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Comparison of Stability Criteria

» Cost of resulting design

* Amenability to arbitrary component
grouping

* Amenability to formulation of design
specification
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Cost of Resulting Design
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Cost of Resulting Design
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Grouping: Case Study 1
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Grouping: Case Study 1 -
Nyquist Plane Results
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Grouping: Case Study 2

—/\V\—T"
—C éR

Source Load

11



Grouping: Case Study 2 =
Nyquist Plane Results
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Grouping: Summary

* ESAC Criteria much less sensitive to
grouping than other proposed criteria
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Design Specification: Middlebrook

* Suppose Z, known
* Design specification on load becomes

1

1Y) <
GM |Z,

 Alternately, could come up with
specification on load impedance 4
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Design Specification:
Gain and Phase Margin Criteria

* Design specification based on
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Design Specification: ESAC Criteria

Construction of a load admittance specification at a point
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Design Specification: ESAC Criteria

Construction of load admittance constraint at a frequency
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Design Specification: ESAC Criteria

3-D stability constraint in admittance space
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Comments on Stability Criteria

* Design Cost (Highest to Lowest)

— Middlebrook, Opposing Argument, GMPM,
ESAC

* Component Grouping
— ESAC criteria much less sensitive to grouping

» Translation to Design Specification
— Middlebrook most readily used

— GMPM not bad
— ESAC requires toolbox
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Dealing with Reality:

Example System
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Generalized Source Impedance

e Speed: 0.9-1.1 p.u.

 Power: 0-1.1 p.u.

* Voltage: 0.95-1.05 p.u.

* Number of Plants Considered: 125
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Generalized Source Impedance
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Generalized LL.oad Admittance
and LL.oad Admittance Constraint
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magnitude, dB
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Generalized Source Impedance
and Source Impedance Constraint
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Measured Performance
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Mitigation: The Nonlinear Stabilizitig
Control Architecture (NSCA)

Regulatory Control
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Generalized Load Admittance
and Constraint with NSCA
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Generalized Source Impedance”
and Constraint with NSCA
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Measured Performance with NSCA
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Conclusions

e ESAC Criteria

— Leads to Less Expensive / Higher Performance Designs
— Facilitates Modularity in Design Process
* 3-Dimensional Admittance/Impedance Space
Approach
— Allows ESAC (and Arbitrary) Stability to Be Used
— Facilitates Specification of Source Given Load

— Facilitates Specification of Load Given Source
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